Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Элементы комбинаторики






а) Вычислите значение X комбинаторного выражения;

б) Решите комбинаторную задачу;

в) Решите комбинаторную задачу повышенного уровня сложности.

а) X = 10 P 4× ;

б) В студенческой группе 10 девушек и 6 юношей. Для участия в эстафете от группы требуется выставить команду из двух девушек и двух юношей. Сколькими способами можно сформировать команду?

в) Сколькими способами шесть пассажиров могут сесть в электричку из пяти вагонов так, чтобы ни один вагон не оставался пустым?

Решение: 1а) С учетом известных формул комбинаторики (без повторений) для числа перестановок из n элементов:

Pn = n!;

размещений из n элементов по k элементов:

= ;

и сочетаний из n элементов по k элементов:

= ;

проведем необходимые преобразования:

X = 10 P 4× = 10× 4! × × = 2× 5! × × 5! =

= 5! × (2× – 1) = 5! = 120.

б) Число способов выбрать для участия в команде двух девушек равно:

= = = 45.

Аналогично, число способов выбрать для участия в команде двух юношей равно:

= = = 15.

Согласно комбинаторному принципу умножения, число способов сформировать команду из двух девушек и двух юношей равно:

n = ´ = 45´ 15 = 675.

в) Из условия задачи ясно, что в одном вагоне (из пяти) должны разместиться два пассажира, а в остальных четырех вагонах – по одному.

Для удобства будем считать, что вначале в электричку садятся вместе в один из вагонов два человека, случайным образом отобранных из шести, а затем оставшиеся четыре человека произвольным образом рассаживаются по одному в четыре свободных вагона.

Число способов выбрать два пассажира из шести составляет = 15. Число способов этой паре выбранных пассажиров разместиться в одном вагоне равно числу вагонов, т.е. 5. Таким образом, полное число способов выбора пары пассажиров и ее размещения в одном из вагонов составляет × 5 = 15× 5 = 75. Число способов рассадки оставшихся 4-х пассажиров по 4-м свободным вагонам равно числу перестановок из четырех: P 4 = 4! = 24.

Окончательно, полное число способов шести пассажирам сесть в электричку из пяти вагонов так, чтобы ни один вагон не оставался пустым, составляет n = ´ 5´ P 4 = 75´ 24 = 1800.

Ответ: a) X = 120; б) n = ´ = 675; в) n = ´ 5´ P 4 = 1800.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал