Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Эффективность рекламы.
Предположим, торговой фирмой реализуется некоторая продукция B, о которой из числа N потенциальных покупателей знает y покупателей. Для ускорения сбыта продукции были даны рекламные объявления по радио и телевидению. Информация о продукции распространяется среди покупателей посредством общения друг с другом. Для достижения оптимального сбыта товара требуется найти закон изменения числа граждан, владеющих информацией о продукции с течением времени. Естественно предположить, что после рекламных объявлений скорость изменения числа граждан, владеющих информацией о товаре B в момент времени t, пропорциональна как числу y(t) таких граждан, так и числу , которые о нем ничего не знают, то есть получаем уравнение , (13.2) которое описывает процесс распространения рекламы среди населения. Уравнение (13.2) также как и уравнение (13.1), содержит, наряду с искомой функцией y(t) и ее производную .
Дифференциальные уравнения. Основные понятия. Определение 1. Уравнение, связывающее независимые переменные xi, искомую функцию y и производные различных порядков этой функции, называется дифференциальным уравнением. Если искомая функция y зависит только от одной переменной, то дифференциальное уравнение называется обыкновенным и записывается в виде , (13.3) Порядок старшей производной, входящий в уравнение, называется порядком дифференциального уравнения. В частности, уравнение 1-го порядка имеет вид (13.4) Рассмотрим дифференциальные уравнения 1-го порядка. Простейшим дифференциальным уравнением 1-го порядка является отыскание первообразной функции f(x). Действительно, если , то (13.5) В данном случае дифференциальное уравнение имеет бесчисленное множество (семейство) решений. Задача отыскания решения всякого дифференциального уравнения сводится к отысканию всех его решений. Эта задача называется интегрированием дифференциального уравнения. Из решения (13.5) обнаруживаем, что оно содержит произвольную постоянную C. Определение. Функция называется решением дифференциального уравнения, если при подстановке ее в уравнение вместе о своей производной обращает его в тождество, то есть
При каждом фиксированном значении постоянной , получаем некоторое решение , называемое частным решением. Определение. Совокупность функций , где с - произвольная постоянная, всех частных решений называется общим решением дифференциального уравнения 1-го порядка. Всякое частное решение геометрически определяет некоторую кривую, называемую нтегральной кривой. Общее решение , определяет множество (семейство) всех интегральных кривых (рис.13.1). Если требуется из семейства кривых выделить некоторую определенную кривую, необходимо задать дополнительные условия. Для этого достаточно указать точку плоскости Мо (x0 , y0), через которую проходит искомая интегральная кривая. Эти дополнительные условия называют начальными условиями. Обычно, их записывают в виде . Подставив координаты точки Мо в найденное общее решение, получаем . Отсюда , а искомое частное решение имеет вид . Эта функция определяет искомую интегральную кривую. Пример. Дано дифференциальное уравнение . Покажем, что его решением является функция . Действительно подставляем y и y' в заданное уравнение . Получено тождество.
Замечание. Если решение дифференциального уравнения найдено в неявном виде его называют общим интегралом.
|