Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Линейные дифференциальные уравнения.






Дифференциальное уравнение первого порядка называется линейным, если оно представлено в виде

(13.10)

Отметим, что искомая функция y и ее производная y' входят в уравнение в первой степени. Функции непрерывны в рассматриваемой области. Если Q(x)=0, уравнение называется однородным, в противном случае - неоднородным.

Будем искать решение уравнения (13.10) в виде произведения двух функций, то есть , из которых одна (любая) может быть выбрана произвольно. Если , то . Из (13.10) получаем

или

Пусть функция V (x) удовлетворяет условно

, (13.11)

тогда (13.12)

Получены уравнения с разделяющимися переменными, которые позволяют найти u(x) и v(x)

Пример. Решить уравнение .

Запишем уравнение в стандартной форме .

Если , то или .

Полагая , получаем .

Решим уравнение ,

ограничившись его частным решением, так как v(x) может быть выбрана, как сказано выше, произвольно. Разделяя переменные и интегрируя это уравнение, получаем . Тогда . Из условия , с учетом найденной функции приходим к уравнению

или ,

Таким образом, общее решение данного дифференциального уравнения имеет вид:

или

Геометрически оно представляет собой семейство гипербол.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал