Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Корреляция для нелинейной регрессии.
Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем тесноты связи, а именно – индексом корреляции R (4.18) где -общая дисперсия результативного признака; - остаточная дисперсия. Учитывая связь дисперсии с объемом вариации, можно легко доказать, что индекс корреляции через объемы вариации определяется следующим образом: (4.19) Нам уже известно, что величина данного показателя находится в пределах от нуля до единицы. Чем он ближе к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. Парабола второй степени, как и полином более высокого порядка, при линеаризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняющей переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого совпадет с индексом корреляции. (Доказательство дано в учебнике Елисеевой И.И. «Эконометрика») Обратимся к равносторонней гиперболе . Заменив на z, имеем регрессию вида , для которой может быть определен линейный коэффициент корреляции . По своей величине он будет равен коэффициенту корреляции между у и х, то есть ryч. Иначе обстоит дело, когда преобразование уравнения в линейную форму связаны с зависимой переменной. В этом случае линейный коэффициент корреляции по преобразованным значениям признаков дает лишь приближенную оценку тесноты связи и численно не совпадает с индексом корреляции. Так, для степенной функции после перехода к логарифмически линейному уравнению loqy=loqa+bloqx может быть найден линейный коэффициент корреляции не для фактических значений переменных у и х, а для их логарифмов (то есть rloqy.loqx). Квадрат линейного коэффициента корреляции будет характеризовать отношение факторной суммы квадратов отклонений к общей, но не для у, а для его логарифмов. Между тем при расчете индекса корреляции используются суммы квадратов отклонений именно у, а не их логарифмов. Квадрат индекса корреляции (i2) называют индекс детерминации, он имеет тот же смысл, что и линейный коэффициент детерминации, то есть представляет собой отношение факторной и общей суммы квадратов отклонений. Индекс детерминации используется для проверки существенности уравнения нелинейной регрессии в целом по F-критерию Фишера F = (4.20) где п – число наблюдений; т – число параметров при переменных х. Величина m характеризует число степеней свободы для факторной дисперсии, а (n – m – 1) – число степеней свободы для остаточной суммы квадратов. Для степенной функции т =1 и формула F-критерия примет тот же вид, что и при линейной парной зависимости (4.21) Для параболы второй степени m =2 и (4.22)
Расчет критерия Фишера можно вести и в таблице дисперсионного анализа результатов регрессии, как это было показано для линейной функции (лекция 3). Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем меньше значение линейного коэффициента детерминации по сравнению с индексом детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию. Практически если величина i2-r2≤ 0.1, то предположение о линейной форме связи считается оправданным. Иными словами, если нет уверенности в правильности выбора нелинейной функции, то в целях лучшей интерпретации связи она может быть заменена уравнением прямой.
Вопросы для повторения 1. Какие есть способы выбора вида математической функции в случае парной связи переменных? 2. В чем сущность экспериментального метода выбора вида уравнения? 3. Назовите виды функций, нелинейных относительно объясняющих переменных. 4. Параметризацию каких видов нелинейных регрессий можно выполнить методом наименьших квадратов? 5. С какой целью проводится линеаризация переменных в уравнениях регрессии? 6. Назовите область применения равносторонней гиперболы в эконометрических исследованиях. 7. В чем особенность параболической регрессионной зависимости? 8. Раскройте содержание «кривых Энгеля». 9. Какова интерпретация показателя степени в степенной функции? 10. Назовите показатели корреляции, используемые при нелинейных соотношениях изучаемых признаков.
|