Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Пересечение многогранников.
ЛЕКЦИЯ №10 ПЛОСКОСТИ, КАСАТЕЛЬНЫЕ К ПОВЕРХНОСТЯМ. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ.
Если через произвольную точку М кривой поверхности Б (рисунок 10-1) провести произвольные линии α, b и c, принадлежащие этой поверхности, а затем к этим кривым в точке М построить касательные прямые tα, tb и tc, то все касательные прямые будут лежать в одной плоскости Е, называемой касательной плоскостью к поверхности. Следовательно, касательная плоскость является геометрическим местом всех касательных, проведенных к данной кривой поверхности и проходящих через одну ее точку. Две эти касательные прямые и определяют касательную плоскость Е. Вполне естественно, что в качестве таких кривых линий поверхности выбирают ее графически простые линии. Например, для линейчатых поверхностей одной из этих кривых может служить ее прямолинейная образующая, (она будет совпадать со своей касательной), а для поверхности вращения – ее параллель (окружность). В зависимости от вида поверхности касательная плоскость может касаться ее в одной точке (рисунок 10-1 – сфера), по прямой линии (рисунок 10-2а – конус), по кривой линии (рисунок 10-2б – тор). В приведенных примерах поверхность располагается по одну сторону от касательной плоскости и не пересекается последней. Однако касательная плоскость может и пересекать поверхность. Так, плоскость Е, касательная к однополостному гиперболоиду, пересекает его по двум образующим α и b, которые при этом являются и касательными tα и tb, определяющими касательную плоскость Е (рисунок 10-3). Рассмотрим примеры построения касательной плоскости к различным поверхностям. Пример 1. Построить плоскость Е, касательную к поверхности вращения в ее точке М (рисунок 10-4). В качестве двух кривых линий поверхности, касательные к которым определят искомую плоскость Е, выберем параллель h и меридиан α, проходящие через точку М. Параллель h является окружностью, расположенной горизонтально, и построение касательной th к ней не составляет труда. Для построения касательной tα к меридиану α предварительно преобразуем чертеж, повернув меридиан вокруг оси поверхности вращения до фронтального положения α 1. При этом точка М займет положение М1. Теперь построим касательную tα к фронтальному меридиану α 1 в его точке М1 и, произведя обратное вращение, получим искомую касательную к меридиану α. Касательная к поверхности вращения плоскость Е определяется двумя пересекающимися прямыми t hи tα. Пример 2. Построить плоскость Е, касательную к поверхности конуса в его точке М (рисунок 10-5). Отметим, что касательная t h параллельна касательной t 1, проведенной в точке N к окружности основания конуса. Поэтому искомую касательную плоскость Е можно задать образующей t и касательной t 1, не строя вспомогательной окружности h, проходящей через точку М. Пример 3. Построить касательную к цилиндрической поверхности плоскость Е, проходящую через точку А, расположенную вне поверхности цилиндра (рисунок 10-6). Поскольку искомая касательная плоскость должна содержать в себе образующую цилиндрической поверхности, то в качестве первой прямой, определяющей касательную плоскость, можно провести через данную точку А прямую α параллельную образующей цилиндра. Если теперь провести через точку В (точку пересечения прямой α с плоскостью Г) касательные к окружности основания цилиндра прямые t1 и t2, то прямая α и касательные t1 и t2 определят две касательные плоскости Е(α х t1) и К(α х t2). Эти плоскости касаются поверхности цилиндра с разных сторон по его образующим т1 и т2.
|