Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы разложения матриц
Разложение неособенной квадратной матрицы в произведение двух треугольных матриц: верхней и нижней с единичной главной диагональю Выше было указано, что всякую квадратную матрицу , имеющую отличные от нуля главные диагональные миноры ….; можно представить в виде произведения двух треугольных матриц (верхней и нижней), причем это разложение будет единственным, если зафиксировать диагональные элементы одной из матриц (например, принять их равными 1). Следовательно, , где и – нижняя и верхняя треугольные матрицы соответственно. Для разработки алгоритма необходимо получить формулы, позволяющие вычислять элементы нижней и верхней треугольных матриц по известным значениям элементов исходной матрицы . При из произведения матриц имеем:
Распространив эти формулы на общий случай ( - произвольное), получим формулы для вычисления элементов матрицы :
и формулы для вычисления элементов матрицы : Полученные формулы позволяют построить алгоритм разложения неособенной квадратной матрицы в произведение двух треугольных матриц: верхней и нижней с единичной главной диагональю (рис.3.3).
Рис.3.3 – алгоритм разложения неособенной квадратной матрицы в произведение двух треугольных матриц: верхней и нижней с единичной главной диагональю Рис.3.4 – алгоритм разложения симметрической положительно определенной матрицы в произведение нижней треугольной и транспонированной ей матрицы Рис.3.5 – алгоритм разложения положительно определенной ленточной матрицы в произведение нижней треугольной и транспонированной ей матрицы Разложение неособенной симметрической матрицы в произведение двух взаимно транспонированных треугольных матриц Подобным же образом получим формулы и алгоритм (рис.3.4) для разложения симметрической положительно определенной матрицы в произведение двух треугольных, взаимно транспонированных матриц :
Разложение положительно определенной ленточной матрицы в произведение двух взаимно транспонированных треугольных матриц Приведем также формулы и алгоритм (рис.3.5) для разложения положительно определенной ленточной матрицы с полушириной ленты, равной , в произведение нижней треугольной и транспонированной ей матрицы:
Разложение неособенной квадратной матрицы в произведение нижней треугольной матрицы с единичной диагональю и матрицы с ортогональными строками Пусть дана действительная неособенная матрица . Из каждой -й строки, начиная со второй, вычитают первую строку, умноженную на некоторое число , зависящее от номера преобразуемой строки. В результате получим преобразованную матрицу . Множители выбираются из условия ортогональности первой строки всем остальным строкам: Матрицу преобразуем аналогично: из каждой ее -й строки вычитаем вторую строку , умноженную на Получим матрицу и т.д., пока не получится матрица , все строки которой попарно ортогональны. Матрица с ортогональными строками получилась из матрицы в результате цепи элементарных преобразований. Поэтому справедливо равенство , где - нижняя треугольная матрица. Матрицу нетрудно получить, проделав над единичной матрицей все преобразования, совершенные над матрицей . Затем находится из условия . Итак, окончательно .
|