Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формулы Гаусса






При построении предыдущих формул в качестве узлов интерполяционного многочлена выбирались середины и (или) концы интервала разбиения. При этом оказывается, что увеличение количества узлов не всегда приводит к уменьшению погрешности, т.е. за счет удачного расположения узлов можно значительно увеличить точность.

Суть методов Гаусса порядка n состоит в таком расположении n узлов интерполяционного многочлена на отрезке [ xi, xi +1], при котором достигается минимум погрешности квадратурной формулы. Анализ показывает, что узлами, удовлетворяющими такому условию, являются нули ортогональнoго многочлена Лежандра степени n (см. подразд. 8.1).

Для n = 1 один узел должен быть выбран в центре отрезка, следовательно, метод средних является методом Гаусса 1-го порядка.

Для n = 2 узлы должны быть выбраны следующим образом:

,

и соответствующая формула Гаусса 2-го порядка имеет вид

.

Для n = 3 узлы выбираются следующим образом:

,

и соответствующая формула Гаусса 3-го порядка имеет вид

.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал