Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Общая формула трапеций и ее остаточный член






 
 

 

 

Рис 8.1. Общая формула трапеций

 

Для вычисления интеграла разделим промежуток интегрирования [ a, b ] на n равных частей и к каждому из них применим формулу трапеций (8.4).

 

Положим и обозначим через значения подынтегральной функции в точках xi тогда: , или

 

. (8.5)

 

Геометрически формула (8.5) получается в результате замены графика подынтегральной функции ломаной линией.

Oстаточный член общей формулы трапеций (8.5) равен:

где

. (8.6)

 

Рассмотрим среднее арифметическое значение второй производной на отрезке [a, b] по всем промежуткам

(8.7)

Очевидно, m заключается между наименьшим m2 и наибольшим M2 значениями второй производной на отрезке [a, b], т.е. .

В силу непрерывности на отрезке [a, b], она принимает все значения от m2 до M2. Значит, существует точка ξ, такая что μ =f''(ξ). Из формул (8.6) и (8.7) получим:

 

(8.8)

 
 

где

Рис 8.2. Формула Симпсона

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал