Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Finite differences.
The finite difference of the first order for y0 is the value: D y0 = y1–y0 (the first finite difference). Analogously: D y1 = y2–y1, …, D yk = yk+1–yk. The second finite differences: D 2y0 = D y1– D y0 … D 2yk = D yk+1– D yk The finite difference of the k-th order: D kyi = D k–1yi+1– D k–1yi. Let us consider the term:
D 2y0 = D y1– D y0 = y2–y1–(y1–y0) = y2–2y1+y0 D 3y0 = D 2y1– D 2y0 = y3–2y2+y1–(y2–2y1+y0) = y3–3y2+3y1–y0 … D my0 = (–1)kC ym–k D myi = (–1)kC ym+i–k The table of differences:
Divided differences.
The first divided difference: f(x0, x1) = [x0, x1] = y0, 1 = = y1, 2 =
The divided difference of the second order:
y0, 1, 2 = ; y1, 2, 3 =
Let us consider the table of the function:
y0, 1 = = y0, 1, 2 = = y0, 1, …, m =
Properties: 1. D(φ + ψ) = Dφ + Dψ: (φ +ψ)0, 1 = φ 0, 1+ψ 0, 1 2. D(cy) = cDy: (cy)0, 1 = cy0, 1 3.: y0, 1, …, k = y3, 0, 1, …, k
Connection between fin. and div. dif. (h = const)
|