Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Прийняття рішень у полі першої інформаційної ситуації
Перша інформаційна ситуація є поширеною в більшості практичних задач прийняття рішень за умов ризику. При цьому ефективно використовуються методи теорії ймовірності та математичної статистики, особливо точкові статистичні оцінки. Розглянемо деякі з основних критеріїв прийняття рішень у полі першої інформаційної ситуації. 1) Критерій Байєса. Згідно з критерієм Байєса оптимальне рішення (чи множина оптимальних рішень) у випадку, коли визначається умовою: : [2]) В +(; Р) = В +(sk; Р). Величина називається байєсівською оцінкою рішення (стратегії) і є математичним сподіванням випадкової величини, що задається вектором оцінювання . Якщо функціонал оцінювання має негативний інгредієнт , тобто відображає ризики, збитки, непередбачені виплати тощо, то величину називають байєсівською оцінкою ризику рішення (стратегії) . У цьому випадку оптимальне рішення (стратегія) визначається умовою: . Слід відмітити, що як показують дослідження, навіть у випадку сприятливої щодо СПР ситуації рішення, прийняте лише на основі критерію Байєса, неадекватне, тобто воно не враховує всі аспекти реальної ситуації (оскільки він не враховує варіацію). Тому оцінки, отримані згідно з цим критерієм, часто використовують як складові більш складних критеріїв, що враховують розкид значень функціоналу оцінювання на множині сценаріїв (це розглядатиметься далі). 2) Критерій мінімальної дисперсії. Незалежно від інгредієнта функціонала оцінювання оптимальне рішення (стратегія) може визначатись умовою: де - дисперсія випадкової величини, що задається вектором оцінювання . 3) Критерій мінімальної семіваріації. Незалежно від інгредієнта функціонала оцінювання оптимальне рішення (стратегія) може визначатись умовою: : , де – семіваріація випадкової величини, що задається вектором оцінювання , a k = – вектор індикаторів несприятливих відхилень для рішення sk відносно байєсівської оцінки В (sк; Р) цього рішення(k = 1, ..., m). 4) Критерій мінімального коефіцієнта варіації. Якщо функціонал оцінювання має позитивний інгредієнт , то оптимальним слід вважати рішення (стратегію) де – величина коефіцієнта варіації для рішення sk. 5) Критерій мінімального коефіцієнта семіваріації. Якщо F = , то оптимальним слід вважати рішення де – величина коефіцієнта семіваріації для рішення sk.
|