Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Системы поддержки принятия решений
В 1980-е годы американские и японские компании начали развивать информационные системы, которые разительно отличались от MIS. Эти системы положили начало процессу «интеллектуализации» ИС. Новые системы были меньшими, интерактивными, и их целью было помочь конечным пользователям работать со всеми типами данных, проводить аналитические исследования, строить модели и разыгрывать сценарии для решения слабоструктурированных и вообще неструктурированных проблем в инновационных проектах. Системы, предоставляющие такие возможности, называются системами поддержки принятия решений - СППР (Decision Support System - DSS) (Рис.27). В середине 1980-х такие системы стали использоваться в текущей деятельности крупных компаний и корпораций. В настоящее время DSS является обязательной частью корпоративных ИС (КИС). Приведем основные характеристики систем поддержки принятия решения: · предлагают гибкость использования, адаптируемость и быструю реакцию; · допускают управление входом и выходом; · работают практически без участия профессиональных программистов; · обеспечивают информационную поддержку для решений проблем, которые не могут быть определены заранее; · применяют сложный многомерный и многофакторный анализ и инструментальные средства моделирования. Данные, приведенные в таблице 2, показывают различия между системами MIS и DSS.
Хорошо разработанные DSS применяются на многих уровнях предприятия. Руководители компании и ведущие менеджеры могут пользоваться финансовыми модулями DSS, чтобы предсказать эффективность использования активов компании при изменении деловой активности или экономической ситуации в стране. Менеджерам среднего звена та же система может быть полезной для оценки перспективности краткосрочных инвестиций по выполняемым проектам. Для руководителей проектов - это инструмент для финансового планирования и распределения средств по планируемым закупкам. DSS состоят из трех компонент: программного ядра и хранилища данных, аналитических средств обработки, анализа и представления информации, телекоммуникационных устройств. Рис.33. Основные компоненты системы поддержки принятия решения Хранилище данных предоставляет единую среду хранения корпоративных данных, организованных в структуры и оптимизированных для выполнения аналитических операций. Аналитические средства позволяют конечному пользователю, не имеющему специальных знаний в области информационных технологий, осуществлять навигацию и представление данных в терминах предметной области. Для пользователей различной квалификации DSS располагают различными типами интерфейсов доступа к своим сервисам (Рис.33). Аналитические системы позволяют решать три основных задачи: анализ разнородной многомерной информации разной степени формализованности в реальном времени, последующий интеллектуальный анализ данных с построением моделей развития деловой ситуации и ведение отчетности. Процесс принятия делового решения (Рис.34) отличается от аналогичного процесса в научной или социальной сфере тем, что преобразование рабочей гипотезы в решение осложняется двумя объективно существующими проблемами. Рис.34. Итерационный процесс принятия решения Первая из них состоит в том, что накопление личного опыта в ходе повседневной деятельности у бизнесменов отстает от динамичного изменения экономической ситуации - что особенно характерно для современной России. Вторая проблема заключается в том, что в предпринимательской деятельности - да еще в условиях свободного рынка - практически отсутствует возможность проведения целенаправленных экспериментов, которые позволяют проверять правильность гипотезы на практике. Следовательно, применительно к бизнес-деятельности процесс принятия решения претерпевает разрыв как минимум в двух точках: на этапе выдвижения гипотез и на этапе экспериментальной верификации моделей. Ликвидировать эти разрывы призвано активно развивающееся направление ИТ - технология многомерного анализа данных (On-Line Analytical Processing - OLAP). Коротко эту технологию можно охарактеризовать следующими словами: Быстрый Анализ Разделяемой Многомерной Информации (Fast Analysis of Shared Multidimensional Information - FASMI). Ценность технологии многомерного анализа данных для бизнеса определяется тем, что она позволяет извлекать из «сырых» структурированных (как правило, в виде таблиц) данных информацию и знания, использование которых в принятии и реализации решений позволяет создавать дополнительную стоимость в компании по сравнению со стоимостью, создаваемой в отсутствие такой информации. OLAP-технологии В 1993 году основоположник реляционного подхода к построению баз данных Эдгар Кодд с партнерами, опубликовали статью, озаглавленную «Обеспечение OLAP (оперативной аналитической обработки) для пользователей-аналитиков», в которой сформулированы 12 особенностей технологии OLAP, которые впоследствии были дополнены еще шестью. Эти положения стали основным содержанием новой и очень перспективной технологии. Основные особенности технологии OLAP (Basic): · многомерное концептуальное представление данных; · интуитивное манипулирование данными; · доступность и детализация данных; · пакетное извлечение данных против интерпретации; · модели анализа OLAP; · архитектура " клиент-сервер" (OLAP доступен с рабочего стола); · прозрачность (прозрачный доступ к внешним данным); · многопользовательская поддержка. Специальные особенности (Special): · обработка неформализованных данных; · сохранение результатов OLAP: хранение их отдельно от исходных данных; · исключение отсутствующих значений; · обработка отсутствующих значений. Особенности представления отчетов (Report): · гибкость формирования отчетов; · стандартная производительность отчетов; · автоматическая настройка физического уровня извлечения данных. Управление измерениями (Dimension): · универсальность измерений; · неограниченное число измерений и уровней агрегации; · неограниченное число операций между размерностями. Исторически сложилось так, что сегодня термин OLAP подразумевает не только многомерный взгляд на данные со стороны конечного пользователя, но и многомерное представление данных в целевой БД. Именно с этим связано появление в качестве самостоятельных терминов Реляционный OLAP (ROLAP) и Многомерный OLAP (MOLAP). OLAP-сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP- системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени одновременно по многим параметрам. Вся работа с OLAP-системой происходит в терминах предметной области и позволяет строить статистически обоснованные модели деловой ситуации. Программные средства OLAP - это инструмент оперативного анализа данных, содержащихся в хранилище. Главной особенностью является то, что эти средства ориентированы на использование не специалистом в области информационных технологий, не экспертом-статистиком, а профессионалом в прикладной области управления - менеджером отдела, департамента, управления, и, наконец, директором. Средства предназначены для общения аналитика с проблемой, а не с компьютером. На Рис.35 показан элементарный OLAP-куб, позволяющий производить оценки данных по трем измерениям. Многомерный OLAP-куб и система соответствующих математических алгоритмов статистической обработки позволяет анализировать данные любой сложности на любых временных интервалах. Рис.35. Элементарный гипер-куб Вся работа с OLAP-системой происходит в терминах предметной области и позволяет строить статистически обоснованные модели деловой ситуации. Взаимодействуя с OLAP-системой, менеджер может осуществлять быстрый просмотр интересующей его информации, получать произвольные срезы данных и выполнять аналитические операции: детализации, свертки, сквозного распределения, сравнения во времени одновременно по многим параметрам. Имея в своем распоряжении гибкие механизмы манипулирования данными и визуального отображения, менеджер сначала рассматривает с разных сторон данные, которые могут быть (а могут и не быть) связаны с решаемой проблемой. Далее он сопоставляет различные показатели бизнеса между собой, стараясь выявить скрытые взаимосвязи; может рассмотреть данные более пристально, детализировав их, например, разложив на составляющие по времени, по регионам или по клиентам, или, наоборот, еще более обобщить представление информации, чтобы убрать отвлекающие подробности. После этого с помощью модуля статистического оценивания и имитационного моделирования строится несколько вариантов развития событий, и из них выбирается наиболее приемлемый вариант. У управляющего компанией, например, может зародиться гипотеза о том, что разброс роста активов в различных филиалах компании зависит от соотношения в них специалистов с техническим и экономическим образованием. Чтобы проверить эту гипотезу, менеджер может запросить из хранилища и отобразить на графике интересующее его соотношение для тех филиалов, у которых за текущий квартал рост активов снизился по сравнению с прошлым годом более чем на 10%, и для тех, у которых повысился более чем на 25%. Он должен иметь возможность использовать простой выбор из предлагаемого меню. Если полученные результаты ощутимо распадутся на две соответствующие группы, то это должно стать стимулом для дальнейшей проверки выдвинутой гипотезы. В настоящее время быстрое развитие получило направление, называемое динамическим моделированием (Dynamic Simulation), в полной мере реализующее указанный выше принцип FASMI. Используя динамическое моделирование, аналитик строит модель деловой ситуации, развивающуюся во времени, по некоторому сценарию. При этом результатом такого моделирования могут быть несколько новых бизнес-ситуаций, порождающих дерево возможных решений с оценкой вероятности и перспективности каждого. В таблице 3 приведены сравнительные характеристики статического и динамического анализа.
Практически всегда задача построения аналитической системы для многомерного анализа данных - это задача построения единой, согласованно функционирующей информационной системы, на основе неоднородных программных средств и решений. И уже сам выбор средств для реализации ИС становится чрезвычайно сложной задачей. Здесь должно учитываться множество факторов, включая взаимную совместимость различных программных компонент, легкость их освоения, использования и интеграции, эффективность функционирования, стабильность и даже формы, уровень и потенциальную перспективность взаимоотношений различных фирм производителей. OLAP применим везде, где есть задача анализа многофакторных данных. Вообще, при наличии некоторой таблицы с данными, в которой есть хотя бы одна описательная колонка и одна колонка с цифрами, OLAP-инструмент будет эффективным средством анализа и генерации отчетов. В качестве примера применения OLAP-технологии рассмотрим исследование результатов процесса продаж. Ключевые вопросы «Сколько продано?», «На какую сумму продано?» расширяются по мере усложнения бизнеса и накопления исторических данных до некоторого множества факторов, или разрезов: «..в Санкт-Петербурге, в Москве, на Урале, в Сибири…», «..в прошлом квартале, по сравнению с нынешним», «..от поставщика А по сравнению с поставщиком Б…» и т.д. Ответы на подобные вопросы необходимы для принятия управленческих решений: об изменении ассортимента, цен, закрытии и открытии магазинов, филиалов, расторжении и подписании договоров с дилерами, проведения или прекращения рекламных кампаний и т.д. Если попытаться выделить основные цифры (факты) и разрезы (аргументы измерений), которыми манипулирует аналитик, стараясь расширить или оптимизировать бизнес компании, то получится таблица, подходящая для анализа продаж как некий шаблон, требующий соответствующей корректировки для каждого конкретного предприятия. Поля таблицы: Время, Категория товара, Товар, Регион, Продавец, Покупатель, Сумма, Количество. Время. Как правило, это несколько периодов: Год, Квартал, Месяц, Декада, Неделя, День. Многие OLAP-инструменты автоматически вычисляют старшие периоды из даты и вычисляют итоги по ним. Категория товара. Категорий может быть несколько, они отличаются для каждого вида бизнеса: Сорт, Модель, Вид упаковки и пр. Если продается только один товар или ассортимент очень невелик, то категория не нужна. Товар. Иногда применятся название товара (или услуги), его код или артикул. В тех случаях, когда ассортимент очень велик (а некоторые предприятия имеют десятки тысяч позиций в своем прайс-листе), первоначальный анализ по всем видам товаров может не проводиться, а обобщаться до некоторых согласованных категорий. Регион. В зависимости от глобальности бизнеса можно иметь в виду Континент, Группа стран, Страна, Территория, Город, Район, Улица, Часть улицы. Конечно, если есть только одна торговая точка, то это измерение отсутствует. Продавец. Это измерение тоже зависит от структуры и масштабов бизнеса. Здесь может быть: Филиал, Магазин, Дилер, Менеджер по продажам. В некоторых случаях измерение отсутствует, например, когда продавец не влияет на объемы сбыта, магазин только один и так далее. Покупатель. В некоторых случаях, например, в розничной торговле, покупатель обезличен и измерение отсутствует, в других случаях информация о покупателе есть, и она важна для продаж. Это измерение может содержать название фирмы-покупателя или множество группировок и характеристик клиентов: Отрасль, Группа предприятий, Владелец и так далее. Важный вопрос - наличие данных. Если они есть в каком-либо виде (Excel- или Access-таблица, данные из базы учетной системы, в виде структурированных отчетов филиалов), ИТ-специалист сможет передать их OLAP-системе напрямую или с промежуточным преобразованием. Для этого OLAP-системы имеют специальные инструменты конвертации данных. После настройки OLAP-системы на данные пользователь получит возможность быстро получать ответы на ключевые вопросы путем простых манипуляций мышью над OLAP-таблицей и соответствующими меню. При этом будут доступны некоторые стандартные методы анализа, логически следующие из природы OLAP-технологии. Факторный (структурный) анализ. Анализ структуры продаж для выявления важнейших составляющих в интересующем разрезе. Для этого удобно использовать, например, диаграмму типа " Пирог" в сложных случаях, когда исследуется сразу 3 измерения - " Столбцы". Например, в магазине " Компьютерная техника" за квартал продажи компьютеров составили $100000, фототехники -$10000, расходных материалов - $4500. Вывод: оборот магазина зависит в большой степени от продажи компьютеров (на самом деле, быть может, расходные материалы необходимы для продажи компьютеров, но это уже анализ внутренних зависимостей). Анализ динамики (регрессионный анализ - выявление трендов). Выявление тенденций, сезонных колебаний. Наглядно динамику отображает график типа " Линия". Например, объемы продаж продуктов компании Intel в течение года падали, а объемы продаж Microsoft росли. Возможно, улучшилось благосостояние среднего покупателя, или изменился имидж магазина, а с ним и состав покупателей. Требуется провести корректировку ассортимента. Другой пример: в течение 3 лет зимой снижается объем продаж видеокамер. Анализ зависимостей (корреляционный анализ). Сравнение объемов продаж разных товаров во времени для выявления необходимого ассортимента - " корзины". Для этого также удобно использовать график типа " Линия". Например, при удалении из ассортимента принтеров в течение первых двух месяцев обнаружилось падение продаж картриджей с порошком. Сопоставление (сравнительный анализ). Сравнение результатов продаж во времени, или за заданный период, или для заданной группы товаров. В зависимости от количества анализируемых факторов (от 1 до 3-х) используется диаграмма типа " Пирог" или " Столбцы". Пример: сравнение результатов продаж однотипных магазинов для оценки качества работы менеджеров. Дисперсионный анализ. Исследование распределения вероятностей и доверительных интервалов рассматриваемых показателей. Применяется для прогнозирования и оценки рисков. Этими видами анализа возможности OLAP не исчерпываются. Например, применяя в качестве алгоритма вычисления промежуточных и окончательных итогов функции статистического анализа - дисперсию, среднее отклонение, моды более высоких порядков, - можно получить самые изощренные виды аналитических отчетов. OLAP-системы являются частью более общего понятия «интеллектуальные ресурсы предприятия» или «средства интеллектуального бизнес-анализа» (Business Intelligence - BI), которое включает в себя помимо традиционного OLAP-сервиса средства организации совместного использования данных и информации, возникающих в процессе работы пользователей хранилища. Технология Business Intelligence обеспечивает электронный обмен отчетными документами, разграничение прав пользователей, доступ к аналитической информации из Internet и Intranet. Технологии Data Mining В настоящее время элементы искусственного интеллекта активно внедряются в практическую деятельность менеджера. В отличие от традиционных систем искусственного интеллекта, технология интеллектуального поиска и анализа данных или «добыча данных» (Data Mining - DM), не пытается моделировать естественный интеллект, а усиливает его возможности мощностью современных вычислительных серверов, поисковых систем и хранилищ данных. Нередко рядом со словами Data Mining встречаются слова обнаружение знаний в базах данных (Knowledge Discovery in Databases). Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Data Mining представляют большую ценность для руководителей и аналитиков в их повседневной деятельности. Деловые люди осознали, что с помощью методов Data Mining они могут получить ощутимые преимущества в конкурентной борьбе. В основу современной технологии Data Mining (Discovery-driven Data Mining) положена концепция шаблонов (Patterns), отражающих фрагменты многоаспектных взаимоотношений в данных. Эти шаблоны представляют собой закономерности, свойственные выборкам данных, которые могут быть компактно выражены в понятной человеку форме. Поиск шаблонов производится методами, не ограниченными рамками априорных предположений о структуре выборки и виде распределений значений анализируемых показателей. Рис.36. Этапы применения технологии Data Mining Основой для всевозможных систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается построить шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем. На Рис.36 показан полный цикл применения технологии Data Mining. Важное положение Data Mining - нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (Unexpected) регулярности в данных, составляющие так называемые скрытые знания (Hidden Knowledge). К деловым людям пришло понимание, что «сырые» данные (Raw Data) содержат глубинный пласт знаний, и при грамотной его раскопке могут быть обнаружены настоящие самородки, которые можно использовать в конкурентной борьбе. В первую очередь методы Data Mining заинтересовали коммерческие предприятия, развертывающие проекты на основе информационных хранилищ данных (Data Warehousing). Опыт многих таких предприятий показывает, что отдача от использования Data Mining может достигать 1000%. Известны сообщения об экономическом эффекте, в 10-70 раз превысившем первоначальные затраты от 350 до 750 тыс. долларов. Есть сведения о проекте в 20 млн долларов, который окупился всего за 4 месяца. Другой пример - годовая экономия 700 тыс. долларов за счет внедрения Data Mining в одной из сетей универсамов в Великобритании. Компания Microsoft официально объявила об усилении своей активности в области Data Mining. Специальная исследовательская группа Microsoft, возглавляемая Усамой Файядом, и шесть приглашенных партнеров (компании Angoss, Datasage, Epiphany, SAS, Silicon Graphics, SPSS) готовят совместный проект по разработке стандарта обмена данными и средств для интеграции инструментов Data Mining с базами и хранилищами данных. Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. Отсюда обилие методов и алгоритмов, реализованных в различных действующих системах Data Mining. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какая-то ключевая компонента, на которую делается главная ставка. Можно назвать пять стандартных типов закономерностей, выявляемых с помощью методов Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование. Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в компьютерном супермаркете, может показать, что 55% купивших компьютер берут также и принтер или сканер, а при наличии скидки за такой комплект принтер приобретают в 80% случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка. Если существует цепочка связанных во времени событий, то говорят о последовательности. Так, например, после покупки дома в 45% случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60% новоселов обзаводятся холодильником. С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил. Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства Data Mining самостоятельно выделяют различные однородные группы данных. Статистические пакеты. Последние версии почти всех известных статистических пакетов включают наряду с традиционными статистическими методами также элементы Data Mining. Но основное внимание в них уделяется все же классическим методикам - корреляционному, регрессионному, факторному анализу и другим. Недостатком систем этого класса считают требование к специальной подготовке пользователя. Также отмечают, что мощные современные статистические пакеты являются слишком тяжеловесными для массового применения в финансах и бизнесе. Есть еще более серьезный принципиальный недостаток статистических пакетов, ограничивающий их применение в Data Mining. Большинство методов, входящих в состав пакетов, опираются на статистическую парадигму, в которой главными фигурантами служат усредненные характеристики выборки. А эти характеристики при исследовании реальных сложных жизненных феноменов часто являются фиктивными величинами. Это чрезвычайно важное обстоятельство следует обязательно учитывать при анализе многомерных данных. В качестве примеров наиболее мощных и распространенных статистических пакетов можно назвать SAS (компания SAS Institute), SPSS (компания SPSS), STATGRAPHICS (компания Manugistics), STATISTICA для WINDOWS, STADIA и другие. Эти пакеты с успехом могут применять небольшие и средние предприятия, а большие многопрофильные компании могут интегрировать их в общую корпоративную сеть. Нейронные сети и экспертные системы. Это большой класс систем, архитектура которых имеет аналогию с построением нервной ткани из нейронов. В одной из наиболее распространенных архитектур - многослойном персептроне с обратным распространением ошибки - имитируется работа нейронов в составе иерархической сети, где каждый нейрон более высокого уровня соединен своими входами с выходами нейронов нижележащего слоя. На нейроны самого нижнего слоя подаются значения входных параметров, на основе которых нужно принимать какие-то решения, прогнозировать развитие ситуации и т. д. Эти значения рассматриваются как сигналы, передающиеся в следующий слой, ослабляясь или усиливаясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. В результате на выходе нейрона самого верхнего слоя вырабатывается некоторое значение, которое рассматривается как ответ - реакция всей сети на введенные значения входных параметров. Для того чтобы сеть можно было применять в дальнейшем, ее прежде надо «натренировать» на полученных ранее данных, для которых известны и значения входных параметров, и правильные ответы на них (Рис.37). Тренировка состоит в подборе весов межнейронных связей, обеспечивающих наибольшую близость ответов сети к известным правильным ответам. Рис.37. Схема самообучающейся информационной системы Основным недостатком нейросетевой парадигмы является необходимость иметь очень большой объем обучающей выборки, хотя современные хранилища знаний относительно легко позволяют делать это. Другой существенный недостаток заключается в том, что даже натренированная нейронная сеть представляет собой черный ящик, " глотающий" начальные условия и выдающий прогноз. Знания, зафиксированные как веса нескольких сотен межнейронных связей, совершенно не поддаются анализу и интерпретации человеком (известные попытки дать интерпретацию структуре настроенной нейросети выглядят пока неубедительно). Примеры используемых нейросетевых систем - BrainMaker (CSS), NeuroShell (Ward Systems Group), OWL (HyperLogic). В отличие от нейронных сетей, где прогноз формируется без участия человека, экспертные системы включают одного или нескольких специалистов высокого класса в качестве элемента (Рис.38). Экспертная система имеет разветвленную сеть, позволяющую делать запросы и глубокий поиск в базах данных и хранилищах знаний. Если нейронные сети работают на принципе передачи информации от одних слоев нейронов к другим, причем изменения информации, происходящие во время передачи, обусловлены заранее не оговоренными эвристическими правилами, то в экспертных системах существует жесткий логический каркас - создатель заключения, который автоматически проводит линию рассуждения по заложенным в алгоритм правилам и использует параметры, вовлеченные в решение. Рис.38. Схема экспертной информационной подсистемы Ответ может быть известен заранее по результатам отзывов специалистов-экспертов; этот ответ сопоставляется с ответом системы, параметры изменяются, и проводится второй «прогон». В результате выдается экспертное заключение с вероятностной оценкой его надежности. Интерфейс допускает работу сразу нескольких пользователей. Экспертные системы широко применяются в бизнесе, часто работают независимо и не включаются в корпоративные информационные сети. Как правило, они являются узко специализированными: транспортные, медицинские, банковские, торговые, юридические и т. д.
|