Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Водоподготовка и водопользование
Нормативные требования к питьевой воде. Гигиенические и технические требования к источникам водоснабжения и правила их выбора в интересах здоровья населения регламентируются ГОСТ 2761—84. Гигиенические требования к качеству питьевой воды централизованных систем питьевого водоснабжения содержатся в санитарных правилах и нормах СанПиН 2.1.4.1074-01 и СанПиН 2.1.4.1175—02, а также ГН 2.1.5.1315—03. Радиационная безопасность питьевой воды регламентируется СП 2.6.1.758—99. Безопасность питьевой воды в эпидемическом отношении должна быть гарантирована соблюдением следующих условий: — термотолерантные полиформные бактерии — отсутствие в 100 мл воды; — общие полиформные бактерии — отсутствие в 100 мл воды; — общее микробное число — не более 50 образующих колонии бактерий в 1 мл воды; — колифаги — отсутствие бляшкообразующих единиц в 100 мл воды; споры сульфитредуцирующих клостридий — отсутствие спор в 20 мл воды; — цисты ляблий — отсутствие цист в 50 л. Безвредность питьевой воды по химическому составу определяется по обобщенным показателям, содержанию химических веществ, наиболее часто встречающихся в природных водах на территории России, и вредных веществ, получивших широкое распространение. Обобщенные показатели (предельно допустимые значения): — водородный показатель (рН) — 6—9; — общая минерализация (сухой остаток), мг/л — 1000; — жесткость общая, моль/л — 7, 0; — окисляемость перманганатная, мг/л — 5, 0; — нефтепродукты, суммарно, мг/л — 0, 1; — поверхностно-активные вещества анионоактивные, мг/л — 0, 5; — фенольный индекс, мг/л — 0, 25. Неорганические вещества (выборочно, не более), мг/л: — алюминий (А13+) — 0, 5; — бериллий (Ве2+) — 0, 0002; — железо (Fe, суммарно) — 0, 3; — кадмий (Cd, суммарно) — 0, 001; — никель (Ni, суммарно) — 0, 1; — нитраты (по ) — 45. Органические вещества (выборочно, не более), мг/л: — ДДТ (сумма изомеров) — 0, 002; — линдан — 0, 002; — 2, 4-Д — 0, 03. Содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения, не должно превышать следующих показателей, мг/л: — хлор (остаточный свободный) — 0, 3—0, 5; — хлор (остаточный связанный) — 0, 8—1, 2; — хлороформ — 0, 2; — озон остаточный — 0, 3; — формальдегид — 0, 05; — полиакриламид — 2, 0; — активированная кремнекислота (по Si) — 10; — полифосфаты (по ) — 3, 5. Благоприятные органолептические свойства воды определяются ее соответствием следующим нормативам (не более): — запах (баллы) — 2; — привкус (баллы) — 2 — цветность (градусы) — 20; — мутность (мг/л, по каолину) — 1, 5. Радиационная безопасность питьевой воды определяется ее соответствием нормативам по показателям общей альфа-и бета-активности, предельные значения которых не должны превышать соответственно 0, 1 и 1, 0 Бк/л. Контроль качества питьевой воды обеспечивается организацией, осуществляющей эксплуатацию системы водоснабжения, службами Санэпидемнадзора, а также независимыми организациями, получившими аттестаты аккредитации Госстандарта России. Источники водоснабжения подразделяют на поверхностные, которые включают забор из реки или озера, и подземные. Последние более надежны в санитарно-гигиеническом отношении. Действительно, в случае возможных аварий вода этих источников подвержена загрязнению в значительно меньшей степени. Подземные воды в зависимости от уровня расположения делятся на почвенные, грунтовые и межпластовые. На рис. 10.19 представлена простейшая схема залегания подземных вод. Грунтовые подземные воды ненапорные (см. рис. 10.19; поз.1) расположены в первом от поверхности Земли водоносном горизонте. Состав и расход их устойчивы, они достаточно широко используются в качестве источников водоснабжения в сельской местности. Межпластовые воды располагаются в водоносных горизонтах, размещенных между двумя водонепроницаемыми пластами. Состав этих вод отличается большим постоянством. Они хорошо защищены от непосредственного загрязнения поверхностными стоками, и вода таких источников используется, как правило, без очистки и обеззараживания.
В случае, когда необходим большой расход воды, в качестве водоисточников используют реки, водохранилища, озера. Вода таких источников содержит много взвешенных частиц, например песка, мельчайших остатков различных растений и организмов, а также множество небезопасных для здоровья человека микроорганизмов. Поэтому воду из открытых источников используют для питьевых целей, как правило, с предварительной очисткой (водоподготовкой), включающей обеззараживание. Лимитирующий показатель вредности для водоемов хозяйственно-питьевого и культурно-бытового назначения (I категория) используют трех видов: санитарно-токсикологический, общесанитарный и органолептический; для водоемов рыбохозяйственного назначения (II категория) наряду с указанными используют еще два вида ЛПВ: токсикологический и рыбохозяйственный. В табл. 10.9. приведены ПДК некоторых веществ для водоемов.
Таблица 10.9
Водоподготовка. Необходимость очистки воды от загрязнений возникает в том случае, если качество воды природных источников не удовлетворяет требованиям. Комплекс типовых очистных сооружений включает, как правило, следующие основные элементы: смесители, камеры хлопьеобразования, отстойники или осветлители, фильтры. В соответствии с рекомендациями СНиП 2.04.02—84 способ обработки воды, состав и расчетные параметры очистных сооружений следует выбирать исходя из конкретных условий. По принципу перемещения масс воды в очистных сооружениях различают самотечные и напорные системы. В первых применяются сооружения открытого типа. Поступающая на обработку вода протекает в них самотеком вследствие разницы гидростатических уровней как в различных частях сооружений, так и между отдельными сооружениями. В напорных системах используются сооружения закрытого типа, в которых вода циркулирует под давлением, создаваемым насосной станцией. Обеззараживание и доочистка. Завершающим этапом подготовки воды для питьевых целей является ее обеззараживание, которое может быть осуществлено с помощью хлорирования, озонирования, бактерицидного облучения и других способов. В современной практике очистки воды наиболее широкое распространение получило хлорирование. На водопроводных очистных станциях для хлорирования используют жидкий хлор, а на станциях небольшой производительности — хлорную известь. Для осветленной речной воды доза хлора обычно колеблется в пределах 1, 5—3, 0 мг/л; при хлорировании подземных вод она не превышает 1—1, 5 мг/л, но в отдельных случаях может потребоваться увеличение дозы хлора из-за присутствия в воде гуминовых веществ, закисного железа. Показателем правильно определенной дозы хлора служит наличие в воде хлора, остающегося в ней от введенной дозы после окисления находящихся в воде веществ. Согласно современным требованиям концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0, 3—0, 5 мг/л. За расчетную следует принимать ту дозу хлора, которая обеспечивает указанное количество остаточного хлора. Расчетная доза назначается в результате пробного хлорирования. В последние годы для обеззараживания все чаще стали использовать озонирование. Озон весьма эффективен, но быстро разлагается. Несомненным достоинством озонирования является снижение запахов и привкусов, а также цветности воды. Средняя доза озона составляет 1 мг/л. Для получения 1 кг озона затраты электроэнергии составляют около 25—30 кВт/ч. Введение озона в воду осуществляют в специальных смесителях, куда озон подается через распределительную систему, выполненную, например, в виде пористых труб. Наилучший эффект получается при контактировании озона с водой в виде мельчайших пузырьков. В некоторых случаях для уничтожения микроорганизмов воду обрабатывают ультрафиолетовыми лучами. Вода, подвергаемая облучению, должна быть максимально прозрачной для ультрафиолетовых лучей. Для больших городов, с большой протяженностью водопроводных сетей, пока этот способ не используется из-за отсутствия длительного действия ультрафиолетового излучения, которое не позволяет гарантировать качество воды от вторичного микробиологического загрязнения. Давно известен способ обеззараживания воды с использованием соединений серебра, который может быть использован, например, в походных условиях. Бактерицидное действие серебра проявляется при концентрации более 0, 04 мг/л, а при концентрации 0, 1—0, 3 мг/л кишечная палочка отмирает в течение часа. При повышении температуры такое бактерицидное действие возрастает. Преимущество серебра перед остальными обеззараживающими реагентами состоит в более длительном бактерицидном действии. Современные технологии очистки воды, наряду с рассмотренными выше стадиями, предусматривают многократное обеззараживание и доочистку на фильтрах с гранулированным активированным углем, что позволяет улучшить качество питьевой воды, особенно в весенний период года. Такая новейшая технология очистки воды используется на Рублевской водопроводной станции в г. Москве. Для доочистки воды в бытовых условиях применяются фильтры различных конструкций, из которых наибольшее распространение получили фильтры типа «кувшин». Это фильтры наливного типа, в которых основным элементом является фильтрующий элемент — картридж. Основу фильтрующей загрузки картриджа составляет в большинстве случаев активированный уголь. В отечественных бытовых фильтрах в качестве адсорбента чаще всего используют активированный уголь марки АГ-8 С, на поверхности гранул которого имеются ионы серебра, что уменьшает вероятность проскока живых микроорганизмов. Наряду с обеспечением населения питьевой водой, важнейшее значение имеет также обеспечение технической водой промышленных предприятий. В большинстве случаев вода в промышленности используется в технологических процессах, требования к ее качеству определяются, как правило, характером технологического процесса. На предприятиях, кроме того, требуется вода для хозяйственно-питьевых целей и ликвидации различных чрезвычайных ситуаций, например для тушения пожаров. Требования к технической воде определяются стандартами и нормативами корпораций и предприятий. При этом выделяются наиболее крупные источники водопотребления — производства для охлаждения, промывки, парообразования, гидротранспорта, технологические процессы, в значительных количествах использующие техническую воду, и т.д. В большинстве случаев качество питьевой воды удовлетворяет требованиям, предъявляемым к воде, используемой в промышленности. Однако ряд современных производственных потребителей предъявляют к качеству используемой воды столь высокие требования, что им не может удовлетворить ни один природный источник водоснабжения. Эти требования могут быть выполнены только в результате искусственной обработки воды (например, для паровых котлов высокого давления, полупроводниковой промышленности и др.).
|