Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Spontaneous Processes and Entropy
Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. For example, according to the principles of thermodynamics, a diamond should change spontaneously to graphite. The fact that we do not observe this process does not mean the prediction is wrong; it simply means the process is very slow. Thus we need both thermodynamics and kinetics to describe reactions fully. What thermodynamic principle will provide an explanation of why, under a given set of conditions, each of these diverse processes occurs in one direction and never in the reverse? After many years of observation, scientists have concluded that the characteristic common to all spontaneous processes is an increase in a property called entropy, denoted by the symbol S. The driving force for a spontaneous process is an increase in the entropy of the universe. What is entropy? Entropy is a thermodynamic function that describes the number of arrangements (positions and/or energy levels) that are available to a system existing in a given state. Entropy is a state function, and is a criterion determining whether one state can be reached spontaneously from another state. The 2nd law of thermodynamics states that the entropy, S, of an isolated system increases upon a spontaneous change. Namely, Δ S > 0 A thermodynamically irreversible process produces entropy. Entropy is related to the disorder of a system in statistical themodynamics as follows: S = klnW where k is the Boltzmann constant, and W is the number of the arrangements of atoms or molecules of the system with the same energy, and corresponds to the extent of disorder. As entropy becomes larger, the larger the disorder of a system. Entropy is closely associated with probability. The key concept is that the more ways a particular state can be achieved, the greater is the likelihood (probability) of finding that state. In other words, nature spontaneously proceeds toward the states that have the highest probabilities of existing. This conclusion is not surprising at all. The difficulty comes in connecting this concept to real-life processes. Positional probability is also illustrated by changes of state. In general, positional entropy increases in going from solid to liquid to gas. A mole of a substance has a much smaller volume in the solid state than it does in the gaseous state. In the solid state, the molecules are close together, with relatively few positions available to them; in the gaseous state, the molecules are far apart, with many more positions available to them. The liquid state is closer to the solid state than it is to the gaseous state in these terms. We can summarize these comparisons as follows: 50 билет Enthalpy of Formation. Hess’s Law
|