Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Парабола.






Определение: Параболой называют множество точек плоскости, расстояние от каждой из которых до заданной точки (фокуса) равно расстоянию до заданной прямой (директрисы).

Расположим параболу так, чтобы начало координат находилось посредине между F и директрисой, причем фокус лежал на оси ОХ.

Обозначим расстояние между F и директрисой - p.

Фокус: F().

уравнение директрисы: х= .

т. М (х, у) - текущая точка параболы.

 

y
N()
F
M(x, y)
х

По определению параболы: │ FM│ =│ NM│.

- каноническое уравнение параболы.

Анализ:

Так как уравнение четно по у, то парабола симметрична относительно оси ОХ.

При х= 0: у= 0. С возрастанием х, увеличивается у.

P - параметр параболы.

т. О(0, 0) - вершина.

: ось симметрии - ось ОХ, p > 0 -график; p < 0- график.

Аналогично можно вывести каноническое уравнение параболы с осью симметрии ОУ.

: ось симметрии – ось ОУ, p > 0 –график; p < 0- график.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал