Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Параметрические датчики.
Параметрические датчики по их устройству и принципу преобразования делятся на: а) контактные; б) реостатные; в) тензочувствительные; г) электролитические; д) термосопротивления; е) емкостные; ж) индуктивные; и) магнитоупругие и магнитострикционные; к) ионизационные. Принцип работы контактных датчиков основан на преобразовании механических перемещений (линейных или угловых) в электрический сигнал путём подключения или отключения источников питания к вторичной цепи (рис. 2.1). Причем входным параметром изображенных датчиков является в одном случае механическая нагрузка, а в другом – температура. Наибольшее применение контактные датчики нашли в качестве конечных выключателей, и они являются типичными представителями релейных элементов, т.к. их выходное сопротивление может принимать только два значения: 0 или ¥. Основным недостатком контактных датчиков является их низкая надежность, т.к. при замыкании или размыкании контактов появляется электрическая дуга (искра), из-за которой сокращается срок службы контактов за счёт их окисления и разрушения, и при этом создаётся высокий уровень электромагнитных помех. Для исключения такого явления применяют различные методы гашения электрической дуги, используя специальные схемы и соответствующие конструкции самих контактов. Рис. 2.2. Реостатные датчики: а – линейный; б – торроидальный В конструкции реостатов используются либо линейные формы каркасов (рис. 2.2, а), для которых входная величина хвх – линейное перемещение, либо – торроидальные (рис. 2.2, б), у которых входная величина хвх – угловое перемещение движка реостата. Обмотки проволочных реостатов выполняются из нихрома или специальных сплавов с высоким внутренним сопротивлением и малым температурным коэффициентом сопротивления. В некоторых случаях вместо обмотки используется графитовое покрытие. Обязательным условием использования этих датчиков является выполнение соотношения Rн> > R, т.е. входное сопротивление элементов, которые подключаются к датчику, должно быть значительно больше сопротивления реостата, в противном случае линейность статической характеристики датчика нарушается (рис. 2.3). Питание реостатных датчиков может осуществляться от источников как постоянного, так и переменного тока. Реостатные датчики нашли довольно широкое применение, несмотря на наличие в их конструкции механического и электрического контакта между движком реостата и его обмоткой, несколько снижающего надежность работы такого датчика. Тензочувствительные датчики – это элементы, основанные на изменении электрического сопротивления проводников и полупроводниковых материалов при наличии в них деформации в пределах упругости. Принцип действия проволочных датчиков понятен из рисунка 2.5, а. В качестве таких датчиков наибольшее применение нашли: – проволочные, чувствительный элемент которых изготовлен из сплавов с высоким удельным электрическим сопротивлением, таких как манганин, нихром, константан; – угольные или графитовые (тензолит, прессугольный порошок) – полупроводниковые (PbS). Для практических целей используют специальную конструкцию проволочных датчиков (рис. 2.5, б), где тонкая манганиновая проволока 3 (Æ 0, 005 мм) укладывается специальным образом на тонкий изоляционный материал 2 (бумага, плёнка), с помощью которого датчик крепится (приклеивается) на исследуемую конструкцию или деталь 1, чтобы деформация детали полностью воспринималась чувствительным элементом датчика. Концы манганиновой проволоки приваривают к медным выводам 4 для дальнейшего подключения датчика к измерительным устройствам. При приложении механической нагрузки происходит деформация чувствительного элемента датчика – проволоки и при этом изменяется её электрическое сопротивление за счет изменения длины и сечения. Статическая характеристика датчика (зависимость относительного изменения сопротивления чувствительного элемента от его относительной деформации в пределах упругости) является линейной (рис. 2.5, в). Чувствительность проволочного датчика, определяемая наклоном статической характеристики, невысока и составляет . Рис. 2.6. Угольный датчик давления: а – устройство; б – статическая характеристика Работа этого датчика основана на том, что при действии механической нагрузки – Р (сжатии) контактное сопротивление между частицами графитовых таблеток 2 и между самими таблетками в столбике уменьшается. Чувствительность подобных датчиков в десятки раз выше, чем у проволочных, а в случае применения полупроводниковых материалов (PbS) – даже в сотни раз. Основным недостатком всех рассмотренных тензодатчиков является наличие температурной погрешности, для компенсации которой применяются специальные методы, рассмотренные во второй части учебного пособия в разделе «Системы автоматического контроля». Тензочувствительные датчики широко применяются для измерения сил, ускорений, деформаций и вызванных ими механических напряжений в строительных конструкциях, а также для других целей, связанных с деформацией (в частности, при исследовании взаимодействия железнодорожного пути и подвижного состава, особенно при больших осевых нагрузках). В электролитических датчиках используется зависимость электропроводности электролитов от его состава (концентрации) и геометрических параметров датчика. Электропроводность простой электролитической ячейки (рис. 2.7) определяется выражением , т.е. зависит от удельной электропроводности раствора c, площади электродов S, находящихся в растворе, и расстояния а между ними, при этом входной величиной такого датчика может быть любой из перечисленных параметров. Для исключения явления электролиза питание электролитических датчиков предпочтительно осуществлять переменным током низкой частоты (f = 50…300 Гц) Электролитические датчики применяются в качестве соленомеров для определения количества солей в водонагревательных установках, в измерителях кислотности (рН-метрах), в устройствах очистки воды для систем водоснабжения, в уровнемерах приемных резервуаров систем водоотведения, для измерения влажности воздуха, а также влажности неоднородных сред (сыпучих строительных материалов). Кроме этого, используя электропроводность воды, они в качестве контактных датчиков применяются для контроля уровня грунтовых вод в строительных котлованах для своевременной откачки из них грунтовых вод. На рис. 2.8 представлено устройство хлористо-литиевого датчика для измерения влажности воздуха, в котором за счёт насыщения влагой соли LiCl (за счет высокой гигроскопичности) меняется её проводимость. Соль наносится на изоляционную пластинку между электродами датчика, а по величине протекающего по ней тока можно определять измеряемый пар аметр – влажность окружающей среды. Работа термосопротивлений основана на зависимости внутреннего сопротивления проводников (металлов) и полупроводниковых материалов от температуры, причем для металлов статическая характеристика датчика (рис. 2.9) в широком диапазоне температур – линейна (рис. 2.9, прямая 1) и описывается выражением , где at – температурный коэффициент изменения сопротивления металла. В качестве материала проводников в термосопротивлениях используют чистые металлы, для которых величина at больше, чем для различных сплавов. Значение температурного коэффициента для таких металлов составляет at = (3, 7…6, 5)× 10-3 (град-1). Так для меди, ассортимент выпускаемых проводников которой наиболее широк, at=4, 3× 10-3 (град-1), т.е. изменение температуры на 10° вызывает изменение сопротивления медной проволоки на 4, 3%. Чувствительность термосопротивлений на основе полупроводниковых материалов значительно выше, чем для металлов, но статическая характеристика их нелинейная (рис. 2.9, кривая 2), поэтому они применяются только в небольшом диапазоне изменения температуры, где нелинейностью характеристики можно пренебречь. Кроме этого, термисторы, как их часто называют, работоспособны только в диапазоне температур от –20 до +120°С, поэтому их практическое применение допустимо лишь в условиях окружающей человека среды. Например, они широко используются в цифровых полупроводниковых медицинских термометрах и во многих приборах, в которых необходимо поддерживать требуемую температуру. Металлические термосопротивления вследствие их конструктивного исполнения (рис. 2.10) имеют достаточно высокую инерционность, что является их существенным недостатком. В качестве датчиков металлические термосопротивления нашли практическое применение в двух режимах их работы. Первый – это режим, при котором температура датчика определяется окружающими условиями и применяется в термометрах и психрометрах (измерителях влажности воздуха). Второй режим – режим нагрева датчика схемным током, при котором его температура определяется условиями теплоотдачи. В этом режиме через чувствительный элемент датчика – проволоку пропускается ток, который нагревает её до температуры t = 150…200°C. При этом отвод выделенного тепла зависит от среды, в которой находится проволока. Подобный режим работы термосопротивлений нашел применение в таких приборах как анемометры (измерители скорости воздушных потоков), вакуумметры и газоанализаторы, но конструктивные особенности исполнения этих датчиков отличаются от рассмотренных выше. Емкостные датчики конструктивно представляют собой электрический конденсатор (рис. 2.11, а). Ёмкость конденсатора определяется тремя параметрами: площадью перекрытия пластин S, расстоянием между ними, а и величиной диэлектрической проницаемости используемого диэлектрика e, находящегося между пластинами. Входной величиной такого датчика может быть любой из перечисленных параметров, а выходной величиной – его реактивное (емкостное) сопротивление , для определения которого необходим источник питания переменного тока высокой частоты. Это объясняется тем, что величина x c при питании датчика от сети (f = 50 Гц) соизмерима с сопротивлением изоляции и составляет при емкости датчика 100…150 пФ более 100 мОм. Поэтому, несмотря на максимальную простоту конструкции и безынерционность датчика, применение его связано с использованием сложной аппаратуры, работающей в области радиочастот (f = 1…10 МГц), а это высокочастотные мостовые схемы и резонансные усилители. Но все же, несмотря на это, емкостные датчики нашли практическое применение во влагомерах (e = var), уровнемерах и в угломерах (S = var) (рис. 2.11, б), а также в емкостных манометрах и микрофонах (a = var). Индуктивные датчики являются другой разновидностью реактивных элементов. Выходной величиной их является индуктивность и индуктивное сопротивление , значение которого определяется измеряемой неэлектрической величиной. Конструктивно индуктивные датчики представляют собой катушку индуктивности с ферромагнитным сердечником (магнитопроводом) и подвижным якорем, являющимся частью этого магнитопровода (рис. 2.12). Величина индуктивности датчика определяется выражением , где w – количество витков катушки, а Rм – магнитное сопротивление магнитопровода (сердечника и воздушного зазора), определяемое согласно выражению . Здесь m – магнитная проницаемость материала сердечника; m0 – магнитная проницаемость воздушного зазора; lc – средняя длина магнитной цепи ферромагнитного сердечника; d – величина воздушного зазора; S – площадь поперечного сечения сердечника. Индуктивность представленного на рисунке датчика будет изменяться за счет перемещения х якоря (S = var). В зависимости от конструкции сердечника это могут быть не только линейные, но и угловые перемещения. Достоинством индуктивных датчиков является простота конструкции, надежность и возможность питания непосредственно от сети переменного тока (f = 50 Гц). Но, в отличие от емкостных датчиков, их существенный недостаток – более высокая погрешность и малая точность из-за нелинейности статической характеристики сердечника (кривой намагничивания). Индуктивные датчики широко применяются в устройствах автоматики для измерения больших и малых перемещений (линейных и угловых), в манометрах, динамометрах, торсиометрах (измерителях моментов), уровнемерах, а также для контроля немагнитных покрытий стальных конструкций. Наиболее чувствительны дифференциальные индуктивные датчики, состоящие из двух одинаковых катушек, соединенных последовательно, и общего подвижного сердечника (рис. 2.13), позволяющие определять не только величину перемещения сердечника, но и его полярность (направление перемещения). Магнитоупругие датчики конструктивно являются тоже индуктивными элементами (рис.2.14), но в них изменение индуктивности обусловлено определённым свойством ферромагнитных материалов при воздействии на них механических усилий. Деформация сердечника из такого материала в результате действия этих усилий приводит к изменению его магнитной проницаемости m, а, следовательно, и величины магнитного сопротивления.
Магнитоупругие датчики по своему применению аналогичны тензочувствительным датчикам, т.е. они также могут использоваться для измерения усилий (рис. 2.14, а), деформаций и вызванных ими механических напряжений (рис. 2.14, б). В качестве материала сердечников в них используется пермаллой, обладающий высоким значением магнитной проницаемости m. В магнитострикционных преобразователях используется обратное свойство ферромагнитных материалов – изменять свои геометрические размеры под воздействием внешних магнитных полей. Практическое применение обе разновидности этих датчиков получили в качестве ультразвуковых акустических излучателей и приемников при контроле механических свойств различных строительных материалов и конструкций. Принцип работы ионизационных датчиков основан на изменении электропроводности газов и жидкостей при воздействии на них облучения (ультрафиолетового, рентгеновского или гамма-излучения). Такие датчики используются для определения параметров этих излучений и конкретным примером применения подобных датчиков могут служить радиометры – приборы для измерения уровня радиации (счетчики Гейгера). Кроме этого, для измерения очень низких значений давления воздуха (до 1 пПа) эти датчики применяются в ионизационных вакуумметрах, в которых интенсивность ионизации газа пропорциональна измеряемому давлению.
|