![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Схемы включения датчиков
Схемы включения датчиков, чаще называемые измерительными схемами, предназначены для преобразования выходной величины датчика, а в большинстве случаев это изменение их внутреннего сопротивления, в более удобную величину для её последующего использования. Это, как правило, электрический ток или изменение напряжения, которые можно либо непосредственно определить с помощью электроизмерительного прибора либо, предварительно усилив, подать на соответствующее исполнительное или регистрирующее устройство. Для этих целей широкое применение получили следующие схемы включения: а) последовательная, б) мостовая, в) дифференциальная, г) компенсационная.
Наиболее часто используется мостовая схема включения, при которой один, а иногда и несколько датчиков определенным образом соединяются совместно с дополнительными резисторами в четырехугольник (так называемый мост Уинстона), у которого имеются две диагонали (рис.3.2). Одна из них, называемая диагональю питания a-b, предназначена для подключения источника постоянного или переменного тока, а в другую, измерительную, диагональ c-d включается измерительный прибор.
Рассмотренная мостовая схема называется неравновесной, так как процесс измерения производится при разбалансе моста, т.е. нарушении равновесия. Неравновесная мостовая схема чаще всего используется в тех случаях, когда сопротивление датчика при воздействии внешних сил может изменяться за единицу времени очень быстро, но тогда вместо измерительного прибора целесообразнее использовать регистрирующее устройство, которое и зафиксирует эти изменения. Более чувствительной считается равновесная мостоваясхема, в которой в два смежных плеча дополнительно подключается специальный измерительный реостат R (рис.3.3), оснащенный шкалой и называемый в измерительной технике реохордом. В работе с такой схемой, при каждом изменении сопротивления датчика мостовая схема должна быть вновь уравновешена с помощью включенного реохорда, т.е. до отсутствия тока в измерительной диагонали. В этом случае, значение измеряемого параметра (изменение величины сопротивления датчика) определяется по специальной шкале, которой оснащается этот реохорд и проградуированной в единицах измеряемой датчиком величины.
Мостовые схемы включения датчиков считаются универсальными, т.к. питание их может осуществляться как постоянным, так и переменным током, а самое главное, в эти схемы могут включаться одновременно несколько датчиков, что способствует повышению не только чувствительности, но и точности измерения. Дифференциальная схема включения датчиков строится с использованием специального трансформатора, питаемого от сети переменного тока, вторичная обмотка которого разделена на две одинаковые части. Таким образом, в этой схеме (рис. 3.4) образуются два смежных контура электрической цепи, по каждому из которых протекает свой контурный ток I1 и I2. А величина тока в измерительном приборе определяется разностью этих токов, и Особенно удобно применять такую схему включения при работе с дифференциальными индуктивными (рис. 2.13) или емкостными датчиками. При использовании подобных датчиков, фиксируется не только величина перемещения, например, ферромагнитного сердечника (рис.3.5), но и направление этого перемещения (его знак), в результате чего изменяется фаза переменного тока, проходящего по измерительному прибору. При этом дополнительно увеличивается и чувствительность измерения.
Компенсационная схема включения датчиков считается самой точной из всех рассмотренных выше. Работа ее основана на компенсации выходного напряжения или э.д.с. датчика равным ему падением напряжения на измерительном реостате (реохорде). Для питания компенсационной схемы используется только источник постоянного тока и применяется она, в основном, с генераторными датчиками постоянного тока. Рассмотрим работу этой схемы на примере использования в качестве датчика термопары (рис. 3.6).
Высокая точность компенсационной схемы обусловлена тем, что в момент измерения электрическая энергия, вырабатываемая датчиком, не потребляется, так как ток в цепи его включения равен нулю. Эту схему можно применять и с параметрическими датчиками, но тогда необходим дополнительный источник постоянного тока, используемый в цепи питания параметрического датчика.
|