Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Composition of functions.
Given: f: Aè B and g: Bè C. The composition of functions f and g is a function from A to C, which is denoted and defined so: (g∙ f): Aè C; where (g∙ f)(a) = g(f(a)) for all elements aÎ A. f g g·f Ex: Let A={a, b, c}, B={1, 2, 3, 4} and C={a, 2, -6}. Let f: Aè B be defined by: f(a)=2, f(b)=2, f(c)=1. Led g: Bè C be defined by: g(1)=a, g(2)=-6, g(3)=-6, g(4)=a. Then (g∙ f): Aè C is the function given by: (g∙ f)(a) = g(f(a)) = g(2) = -6; (g∙ f)(b) = g(f(b)) = g(2) = -6; (g∙ f)(c) = g(f©) = g(1) = a; Ex: Let S be a finite set and x be an element not in S. Let f: P(S) è P(SÈ {x}) be the function defined by: f(T) È {x}, for all T in P(S). Let g: P(SÈ {x}) è N be the function defined by: g(V) = |V| for all V in P(SÈ {x}). In such a case, the composition (g∙ f): P(S) è N is given by (g∙ f)(T) = g(f(T)) = g(TU{x}) = |TU{x}| = |T|+1, for all T in P(S).
Topic: Boolean functions A function y = f(, , …, ) where y, , , …, є{0; 1} is called an n-place Boolean function. There exist four 1 – place Boolean functions of the type fi (x).
Notation used in formulas: (x) = 0(constant); (x) = x; (x)= (negation); (x) = 1(constant). There exist 16 2-place Boolean functions of the type (x, y).
Notation used in formulas: (x, y) = 0(count) = xÙ y (conjuction, logical and) (x, y) = (not y implication x) (x, y) = x (duplicate x) (x, y) = (not x implication y) (x, y) = y (x, y) = xÅ y (exclusive or) (x, y) = xÚ y (disjunction, logical or) (x, y) = x↓ y (Pierce operation) (x, y)=x¯ y (equivalence) (x, y) = (not y) (x, y) = y→ x (y implication x) (x, y) = (not x) (x, y) = x→ y (x implication y) (x; y) = x|y (Sheffer operation) (x; y) = 1 (constant) It is possible to construct a truth table for a boolean function by its number and the number of arguments n.
(x) è
H/a: prove that a Boolean function f(, , …, ) has exactly different sets of argument values. H/a: prove that there exist different Boolean functions of the form f(, , …, ). I remind you: algebra = set of objects + set of operations. 2-element Boolean algebra = {0, 1) + {Ù, Ú, ˉ }. Any Boolean function can be presented by its table. Ex: (x, y, z): (n=3, function №27è 27(decimal) = 11011(binary), 23 = 8 sets of argument values)
Any Boolean function can be presented by a formula (an expression consisting of Boolean functions and their compositions). Priority of Boolean functions in formulas: (), ˉ, Ù, Ú; Note: in formulas we may omit ‘ Ù ’. So x Ù y = xy. (x, y, z) = yz Ú x Ú xy Ú xyz = yz Ú x Ú xy= (x Ú y Ú z)(x Ú y Ú )(x Ú Ú z)(Ú ˇ y Ú ). Note: the same Boolean function can be presented by many equivalent formulas
|