Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Laws of 2-element Boolean algebra.
1. Commutative law: a˅ b=b ˅ a; a ˄ b = b˄ a 2. Associative law: (a˅ b) ˅ c = a ˅ (b ˅ c); (a˄ b) ˄ c = a˄ (b˄ c) 3. Distributive law: a ˅ b ˄ c=(a ˅ b) ˄ (a ˅ c); a˄ (b ˅ c)=a˄ b˅ a˄ c 4. Law for constants: a ˅ 0 =a; a ˅ 1=1; a˄ 0 = 0; a˄ 1 = a 5. Idempotent laws: a ˅ a = a; a ˄ a = a: 6. Negation laws: a ˅ ā =1; (excluded middle) a ˄ ā = Ø: 7. De Morgan’s laws: a Ú b=a ˄ b; a ˄ b = a Ú b; 8. a = a; (Double negation law) H/a: prove laws3 and 7 by building truth tables. Equivalent transformations of formulas of 2-valued Boolean algebra. F(x, y, z, v)= () ˄ () = = () ˄ ( ˄ ˄ ) = (De Morgan’s) =(x ˄ y ˄ z) ˅ ( ˄ y ˄ z) = (double negation) =(x ˄ ˄ y˄ z) ˅ (y˄ ˄ y˄ z) ˅ () = (distributive, idempotent, excluded middle) = ( ˄ y˄ z)˅ ( ˄ y ˄ ) =(x˄ y)˄ (z˅ ) = x ˄ y; Building a truth table by the formulae of 2-element Boolean functions: Given: f(x, y, z)=
Building a formula by a truth table. A method based on 1-values of a Boolean function. Given: a 2-values Boolean function:
f(x, y, z) = ˅ ˅ = ˅ ˅ . This formula takes value 1 only for such sets of variable values: x=0, y=0, z=1 x=0, y=1, z=1 x=0, y=0, z=0. On other sets x, y, z – values (on other interpretations) this function is equal to 0. Definition: A formula of a Boolean function which is a disjunction of its minterms is called its Perfect Disjunctive Normal Form (PDNF). In technical papers such a formula is called a Complete Sum of Products Form(CSPF). We can pass from a table to a formula based on 0- values of the Boolean function.
f1(x, y, z) = (x˅ y˅ z) ˄ (x˅ ˅ ) ˄ ( ˅ ˅ z) = (x˅ y˅ z)(x˅ ˅ )( ˅ ˅ z). Now let x=0, y=1, z=1.
f1(x, y, z) = (x˅ y˅ z)(x˅ ˅ )( ˅ ˅ z)= 0 1 0 0 Let x=0, y=1, z=0 f1(x, y, z = (x˅ y˅ z)(x˅ ˅ )( ˅ ˅ z) = 1
Such a formula which is a conjunction of maxterms is called the Perfect Conjunctive Normal Form(PCNF) or more frequenly Complete Product-of-Sums Form(CPSF).
|