Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методы решения задачи Коши для обыкновенных дифференциальных уравнений первого порядка (ОДУ).






15.1. Метод Эйлера и его модификации.

15.2. Семейство методов Рунге-Кутта (второго, третьего и четвертого порядков).

15.3. Метод Адамса.

15.4. Неявные методы второго и третьего порядка точности.

15.5. Двух- и трехстадийные методы первого и второго порядка точности.

15.6. Двухэтапные неявные методы Рунге-Кутты и Розенброка.

15.7. Трехэтапные неявные методы Рунге-Кутты и Нумерова.

15.8. Методы Рунге-Кутта для системы ОДУ.

Методы решения краевых задач для ОДУ.

16.1. Метод сеток.

16.2. Метод прогонки.

16.3. Метод Галеркина и метод моментов.

Метод сеток для дифференциальных уравнений в частных производных.

17.1. Метод сеток решения задачи Дирихле для уравнения Пуассона.

17.2. Метод сеток решения смешанной задачи для уравнения теплопроводности.

17.3. Метод сеток решения смешанной задачи для уравнения гиперболического типа.


Список литературы

1. Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 1966.- 664 с.

2. Бахвалов Н.С. Численные методы -М.: Наука, 1975. – 632 с.

3. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.1. - М.: Наука, 1966. – 464 с.

4. Березин Н.С., Жидков Н.П. Методы вычислений. – Т.2. - М.: Физматгиз, 1962.- 640 с.

5. Самарский А.А. Теория разностных схем. - М.: Наука, 1983.

6. Иванов В.В. Методы вычислений на ЭВМ. Киев: Наукова думка, 1986.

7. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. -М.: Наука, 1986, - 288 с.

8. Сборник Задач по методам вычислений: Учебное пособие: Для вузов. / Под ред. П.И. Монастырского. - 2-е изд. перераб. и доп. -М.: Физматлит, 1994. -320 с.

9. Воробьева Г.Н., Данилова А.Н. Практикум по вычислительной математике. -М.: Высшая школа, 1990.

10. Лапчик М.П. Рагулина М.И., Хеннер Е.К. Численные методы: Уч. Пособие для ст. вузов. –М.: Изд. Центр «Академия», 2004. – 384 с.

11. Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов - 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 1988. -550 с.

12. Васильев Ф.П. Методы решения экстремальных задач -М.: Наука, 1981. -400 с.

13. Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1980. -536 с.

14. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1976. - 544 с.

15. Самарский А.А. Введение в численные методы. – 3-е изд., перераб. – М.: Наука, 1997. - 239 с.

16. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1972.

17. Шикин Е.В., Плис А.И. Кривые и поверхности на экране компьютера. Руководство по сплайнам для пользователей. – М.: Диалог-МИФИ, 1996 – 240 с.

18. Альберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и их приложения. М.: Наука, 1972.

19. Де Бор К. Практическое руководство по сплайнам. - М.: Наука, 1983.

20. Foley J.D., van Dam A., Feiner S.K., Hugues J.F. Computer graphics. Principles and practice. Addison-Wesley Pub. Com. 991.

21. Боглаев Ю.П. Вычислительная математика и программирование. М.: Высшая школа, 1990.

22. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. -М.: Физ.-мат. лит. 1967.

23. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: Пер. с англ. - М.: Мир, 1990. 512 c.

24. Современные численные методы решения обыкновенных дифференциальных уравнений / Под ред. Дж. Холла, Дж. Уатта. М.: Мир, 1979. 312 c.

25. Деккер К., Вервер Я. Устойчивость методов Рунге-Кутты для жестких нелинейных дифференциальных уравнений.- М.: Мир, 1988. 332 c.

26. Олемской И. В. О численном методе интегрирования систем обыкновенных дифференциальных уравнений // Оптимальное управление в механических системах. Л., 1983. C.178-185.

27. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. – М.: Высш. Шк., 1994. – 544 с.


 

Учебное издание

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал