Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Гаусса. (Карл Фридрих Гаусс (1777-1855) - немецкий математик)






(Карл Фридрих Гаусс (1777-1855) - немецкий математик)

 

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

 

 

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

, где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.

 

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

 

Пример. Решить систему линейных уравнений методом Гаусса.

 

Составим расширенную матрицу системы.

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

 

Пример. Решить систему методом Гаусса.

 

Составим расширенную матрицу системы.

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: z = 3; y = 2; x = 1.

Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.

 

Для самостоятельного решения:

Ответ: {1, 2, 3, 4}.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал