Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Диск Корбино ( определение, основные характеристики)
Оптимальными геометрическими размерами, с точки зрения эффективности магниторезистивного эффекта, обладает так называемый диск Корбино – металлический или полупроводниковый диск, в котором один из электродов находится в центре диска, а другой расположен по длине его окружности (рис. 4.3). При такой конструкции магниторезистора, разность потенциалов Холла не возникает, так как отсутствуют грани, на которых могло бы происходить накопление заряда [13]. Здесь вне действия магнитного поля ток в образце направлен радиально. При помещении диска в магнитное поле B, вектор индукции которого перпендикулярен поверхности диска, носители тока будут отклоняться от изначальных радиальных прямых, вследствие чего траектория их движения будет удлиняться, но образование холловского поля, как было отмечено ранее – не происходит.
Рис. 4.3. Диск Корбино
В случае, когда проводимость диска Корбино обеспечивается зарядами одного знака, изменение его сопротивления рассчитывается как:
В другом случае, если в проводимости материала принимают участие и электроны и дырки, эффект изменения его удельного сопротивления будет определяться согласно выражению (4.12) [14].
(4.12)
где ε – отношение подвижности электронов к подвижности дырок; æ – отношение концентрации электронов к концентрации дырок. В этом случае эффект Гаусса велик, так как электрическое поле Холла не противодействует силе Лоренца для носителей обоих типов.
Относительное изменение удельного сопротивления диска Корбино, изготовленного из полупроводника смешанной проводимости, определяется выражением (4.13) [12], [15].
(4.13)
Удельное сопротивление диска Корбино ρ никогда не бывает меньше удельного сопротивления образца ρ B с a > b, но в некоторых случаях эти сопротивления могут быть равны. Выражение, связывающее их, имеет вид:
ρ = ρ B (1+tan(θ)),
где θ – угол Холла (угол между направлением тока i и вектором суммарного поля E, т. е. угол отклонения носителей тока в результате эффекта Холла), рассчитываемый по формуле:
При θ =0 коэффициент Холла и поле Холла обращаются в ноль, и геометрические эффекты исчезают. Это возможно, при условии: ε =æ =1, тогда равенство соблюдается для всех значений B. Кроме этого, удельное сопротивление диска Корбино и магниторезистивное сопротивление образца прямоугольной формы совпадают при выполнении условия:
(4.14)
Выполнение условия (4.14) имеет место в полупроводниках с проводимостью p – типа, если ε > 1. В этом случае угол Холла меняет знак при увеличении магнитного поля и при некотором значении напряженности поля коэффициент Холла обращается в нуль.
|