![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Привязка конструктивных элементов зданий к разбивочным осям.
15. Использование унифицированных объемно-планировочных и конструктивных решений промышленных зданий требует соблюдения единых правил привязки конструктивных элементов к разбивочным осям. Под размером привязки понимают расстояние от разбивочной оси до грани или геометрической оси сечения конструктивного элемента. Единые правила привязки конструкций к разбивочным осям и единство систем сопряжений их между собой обеспечивают взаимозаменяемость конструкций и позволяют исключить или свести к минимуму число доборных элементов. В одноэтажных каркасных зданиях при привязке колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устроиства температурных швов, а также в местах перепада высот между пролётами и примыкания взаимно перпендикулярных направлений пролётов используют привязки " нулевая", " 250" и " 500" (" 600") мм. Нулевая" привязка должна быть преимущественной, так как при ней исключается применение доборных ограждающих и несущих элементов вместах устройства температурных швов, высотных перепадов и примыкания пролетов различного направления. Ее используют при всех видах материалов каркаса в бескрановых зданиях и в зданиях с подвесными и опорными кранами, если высота от пола до низа несущих конструкций не превышает 14, 4 м, а грузоподъемность кранов - 32 т. При " нулевой" привязке внешние грани колонн крайних продольных рядов (рис. IV-!, а, б) совмещают с разбивочными (координационными) осями. При этом внутренняя поверхность продольных наружных стен и положение разбивочной оси совпадают за исключением случаев применения крупноразмерных навесных (самонесущих) конструкций стен. В этих случаях для удобства монтажа и расположения приборов крепления предусматривают зазоры 30 мм между внешними гранями колонн и внутренней поверхностью стен. При привязке " 250" и более (кратной 50 мм) внешние грани колонн смешают наружу с разбивочной оси на 250 мм (рис. IV-!, в). Такая привязка допускается в зданиях с мостовыми кранами грузоподъемностью более 32 т, при высоте пролета более 14, 4 м и шаге колонн 6 м, а также в зданиях при шаге колонн 12 м и высоте пролетов более 12 м. В таких зданиях использование привязки " 250" и более вызвано увеличением размеров сечения колонн и подколенников, а в ряде случаев необходимостью устройства проходов для ремонта и обслуживания подкрановых путей мостовых кранов. В торцах зданий геометрические оси сечения основных колонн средних и крайних рядов смешают с разбивочной оси внутрь на 500 мм, а сама разбивочная ось совмещается с внутренней поверхностью торцевой стены. В случае необходимости между поверхностью стены и разбивочной осью оставляется зазор 30 мм (рис. IV-!, г). Такое правило привязки позволяет производить конструктивно оправданное размещение фахверковых колонн у торцевых стен и подстропильных и стропильных конструкций покрытия без доборных элементов. 17. Поперечный температурный шов между парными колоннами в зданиях с пролетами равной высоты устраивают с использованием привязки колонн к одной или двум разбивочным осям (рис. IV-!, д, е). Привязки к двум разбивочным осям применяют в зданиях со сборным железобетонным каркасом и при расстоянии между поперечными температурными швами более 144 м, В обоих случаях привязка предусматривает смешение геометрических осей сечения колонн на 500 мм в обе стороны от разби-вочных осей. В настоящее время в связи с совершенствованием унификации рекомендуется переход на новые, более экономичные привязки. В частности, вместо привязки " 500" в случаях, рассмотренных на рис. IV-!, г-е, рекомендовано использование привязки " 600". Продольный температурный шов между парными колоннами в зданиях с пролетами равной высоты осуществляют, предусматривая две раз-бивочные оси со вставкой между ними (рис. IV-!, ж-к). Размер вставки зависит от способов привязок в примыкающих пролетах и может составлять 500, 750 и 1000 мм. Привязку колонн разновысоких пролетов осуществляют к двум продольным разбивочным осям со вставкой между ними Привязка колонн к этим осям должна соответствовать правилам при-'язок " О" или " 250". Размер вставки С (мм) должен быть кратным 50 мм (но не менее 300 мм) и равняться сумме следующих размеров: С= “0”(“250”)*1(2)+d+e+50 где: d толщина стены, мм; е - зазор между наружной гранью колонн повышенного пролета и внутренней плоскостью стены, мм, обычно е=30мм; 50мм зазор между наружной плоскостью стены и гранью колонн пониженного пролета. В местах примыкания взаимно перпендикулярных пролетов привязку колонн осуществляют также к двум разбивочным осям со вставкой между ними.Размер вставки С (мм) зависит от способа привязки в поперечном (более высоком) пролете (" О" или " 250") и может быть С =0(250) + e+d +50. Этот размер округляют до кратности 50 мм, и он не должен быть менее 300 мм. При наличии продольного температурного шва между пролетами, примыкаюшими к перпендикулярному пролету, этот шов продлевают до пролета, где он будет поперечным швом. При этом вставка между раз-бивочными осями в продольном и поперечном швах должна иметь одинаковую величину (500, 750 или 1000 мм), а каждую из парных колонн по линии поперечного шва смещают с ближайшей парной оси на 500 мм. В зданиях с покрытиями из железобетонных оболочек внешние грани колонн крайних рядов смешают с разбивочных осей наружу на 250 мм, а внутренние плоскости наружных стен из панелей горизонтальной разрезки располагают на 30 мм от грани этих колонн. Ширину вставки между парными разбивочными осями в местах продольных и поперечных температурных швов принимают равной 1000 мм, а колонны, обращенные в сторону швов, относят от разбивочных осей наружу на 250 мм. Несущие наружные стены привязывают к продольным разбивочным осям следующим образом. При опирании стропильных ферм (балок) или прогонов на кирпичные стены толщиной 380 мм или мелкоблочные стены 400 мм внутренние плоскости стен смещают внутрь с разбивочных осей на 100 мм. Для опиранин несущих конструкций предусматривают пилястры, выступающие внутрь здания из плоскости стены не менее чем на 130 мм (рис. 1У-2, е). При большей толщине стен их привязки принимают равной 200 мм, а надобность в пилястрах определяют из условия обеспечения устойчивости стен (рис. 1У-2, ж). При опирании плит покрытия непосредственно на наружные стены внутренние плоскости их смещают с разбивочных осей внутрь здания на 130 или 150 мм соответственно кирпичных или мелкоблочных стенах. Так же производят привязку к поперечным разбивочным осям несущихторцевых стен при опирании на них плит покрытия. Геометрические оси внутренних стен совмещают с разбивочными. 16-18 В многоэтажных зданиях с балочными перекрытиями размер привязки колонн крайних рядов к продольным разбивочным осям зависит от нормативных нагрузок на покрытия. Так, в зданиях с нагрузками на них 5-10 кН/м2 (500-1000 кг/м2) внешнюю грань колонн смещают с раз-бивочной оси наружу на 200 мм, а между внутренней плоскостью стены и гранями колонн предусматривают зазор 30 мм (рис. 1У-3, а). В зданиях с нагрузками на перекрытия 10-25 кН/м2 внешние грани колонн совмещают с разбивочной осью и оставляют зазор в 30 мм между колоннами и стеной (рис. 1У-3, б). В торцах многоэтажных зданий внешние грани колонн относят от крайних поперечных разбивочных осей на 200 мм (рис. 1У-3, а) или геометрические оси сечения крайних колонн смещают с разбивочных осей внутрь на 500 мм (рис. ГУ-3, 6). В первом случае между внутренней плоскостью торцовой стены и внешней гранью колонн оставляют зазор 30 мм, а во втором такой зазор предусматривают между стеной и разбивочной осью. Поперечные температурные швы устраивают на двух рядах колонн со вставкой между ними размером 1000 мм или без нее. В первом случае геометрические оси сечения парных колонн совмещают с разбивочными осями (рис. 1У-3, а), во втором - температурный шов совмещают с одинарной разбивочной осью и каждую из парных колонн смещают с разбивочной оси на 500 мм (рис. 1У-3, б). В многоэтажных и двухэтажных, зданиях с укрупненными пролетами верхнего этажа привязку крайних колонн и наружных стен к продольным и поперечным разбивочным осям производят так же, как в одноэтажных зданиях. Колонны средних продольных и поперечных рядов многоэтажных зданий различных конструктивных решений привязывают так, чтобы геометрические оси сечения колонн совпадали с разбивочными осями. Геометрические оси сечения крайних и средних колонн в зданиях с безбалочными перекрытиями совмещают с разбивочными осями, а наружные стены и температурные швы привязывают согласно указаниям по применению этих конструкций. В месте примыкания к одноэтажному зданию многоэтажного не допускается смешать разбивочные оси, перпендикулярные к линии пристройки и общие для обеих частей сблокированного здания. При этом вставку между разбивочными осями по линии поперечных температурных швов многоэтажного здания предусматривают тогда, когда нельзя смещать оси в обеих частях здания (рис. 1У-4). Размер вставки между параллельными крайними разбивочными осями по линии примыкания многоэтажного объема к одноэтажному принимают таким, чтобы в этом месте можно было использовать по возможности типовые стеновые панели (рядовые или доборные).
19. Производственно-технологическая схема как основа объемно-планировочного решения здания. Объемно-планировочное решение любого промышленного здания зависит от характера технологического процесса, располагаемого внутри здания. Технологический процесс в свою очередь предопределяется производственно-технологической схемой, в которой установлена определенная последовательность операций по выработке продукции или полуфабриката, намечены технологическое оборудование и характер его расстановки, вид и грузоподъемность внутрицехового транспорта, номенклатура, размеры и последовательность расположения помещений, внутренний температурно-влажностный режим и т.п. Технологическая схема предусматривает также места поступления сырья и вспомогательных материалов, выхода- готовой продукции или полуфабриката, удаления отходов производства, места ввода инженерных сетей. При автоматизированном конвейерном производстве технологическая схема предусматривает размещение автоматических линий с указанием пунктов различных операций по обработке и сборке изделий. Кроме того, технологическая схема, определяя характер и массу рабочего оборудования и продукции, является решающим фактором при выборе этажности и здания. Для обеспечения рациональной планировки цехов необходимо знать габариты технологического оборудования и готовых изделий, характер расположения рабочих мест, ширину проходов и проездов, а также схему расстановки производственного оборудования. В комплекс вопросов планировки здания входит обеспечение хороших его эксплуатационных качеств, что в значительной степени зависит от размещения отдельных производственных участков. Так, отделения с мокрыми процессами необходимо размешать в средней части здания (во избежание образования на стенах конденсата). Там же следует помещать отделения со строго заданным температурно-влажностным режимом. Участки с горячими процессами располагают около наружных стен для улучшения вентиляции.
Виды планировок и блокирование цехов. Классификация отраслей промышленности включает около 150 наименований, а разновидностей предприятий и производств - несколько тысяч. Размещаемые в промышленных зданиях технологическое оборудование и установки весьма разнообразны как по геометрическим размерам, так и по условиям эксплуатации. В силу этих обстоятельств диапазон различий в видах и типах промышленных зданий, в первую очередь по конфигурации и размерам планировок, очень широк. Все виды планировок можно разделить на два основных типа: раздельные и сплошные. Раздельные планировки присуши предприятиям незначительной ощности, когда его составляющие производства размещают в неболь-|их отдельно стоящих зданиях с пролетами ограниченных размеров. Предприятия с раздельным размещением производств имеют следу-Цие недостатки: большую площадь застройки, что увеличивает протяженность инженерных и транспортных сетей и объем работ по благоустройству территории; отсутствие возможности организации поточного производства и необходимость в межцеховом транспорте. Современная практика показывает, что производства с однотипными, а иногда и различными технологическими процессами (если это не противоречит санитарно-гигиеническим требованиям, пожаро- и взрывобезопасности) целесообразно блокировать в одном здании. Для значительного числа производств в здании под одной крышей можно расположить все основные, подсобные, вспомогательные и складские помещения. Сблокированные здания представляют собой многопролетные корпуса большой площади, имеющие сплошную планировку. Сблокированные здания допускают многовариантную расстановку технологического оборудования, позволяют уменьшить площадь заводской территории на 30-40%, сократить периметр наружных стен до 50%, снизить стоимость строительства на 10-15%, сократить длину коммуникаций и транспортных путей, снизить расходы на эксплуатацию зданий и благоустройство территории. Вместе с тем в чрезмерно укрупненных зданиях возникает ряд неудобств: удорожается устройство естественного освещения помещений, затрудняется водоотвод с покрытий, усложняются пути передвижения персонала и транспортировки грузов. Поэтому сблокированные корпуса не следует проектировать более 30-35 тыс.м2. Блокировать цехи особенно целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и разница в их высоте не превышает 2 м (желательно приведение разных высот к одной), если не требуется увеличивать площадь, обслуживаемую кранами большей грузоподъемности по сравнению с отдельными зданиями, когда не нужны дополнительные проезды, и, наконец, если не ухудшаются условия технологии производства и труда рабочих. При блокировании производств в здании сплошной застройки, как правило, используют принципы зонирования. Зонирование предполагает по возможности рациональную фуппировку в пределах объема производственного здания помещений, участков и зон в соответствии с определенными признаками (технологические, уровни производственной вредности, пожаро- и взрывоопасность, направленность транспортных и людских потоков, перспективы расширения и переоснащения и т.п.). Так, в пределах одноэтажного здания блокированного типа могут быть выделены зоны подъезда автомобильного и железнодорожного транспорта, складов, подсобно-производственных помещений, вентиляционных и энергетических систем, основных производств, административных и бытовых помещений и т.п. Зонирование может осуществляться по горизонтали (в пределах этажа) и по вертикали (в многоэтажных зданиях). Однако даже в одноэтажных зданиях может быть использовано горизонтальное и вертикальное зонирование, так как все чаще инженерные коммуникации размещают выше или ниже рабочей зоны в пределах межферменного пространства или в подпольных каналах. Промышленные здания должны иметь простую конфигурацию в плане; следует избегать периметральных пристроек к корпусу, усложняющих расширение и реконструкцию производств. В качестве примера целесообразного блокирования на рис. У-3 показан главный корпус Волжского автозавода. В этом здании, имеющем размеры в плане 1848x468 м и состоящем из шести одноэтажных блоков, 'азмещены многие основные и вспомогательные производства. С южной гороны парные блоки соединены пролетами для сборочных конвейеров промежуточных складов. Бытовые, вспомогательные и транспортные смещения расположены в восьми встройках, размещенных между основными блоками. Для строительства главного корпуса применена единая сетка колонн 12x24 м. Встройки запроектированы с сеткой колонн 12 х 12 м, высота корпуса - 10, 8 м.
21-23 Во всех случаях в здании должны быть обеспечены требуемые нормами санитарно-гигиенические и бытовые условия для работающих, а также выполнены требования пожарной безопасности. Выбор ширины и высоты пролетов, шага колонн. Конфигурация и размеры плана, высота и профиль промышленных зданий определяются технологическими параметрами, числом и взаимным расположением пролетов. Эти факторы, как отмечалось, зависят от технологии производства, характера выпускаемой продукции, производительности предприятия, требований санитарных норм и пр. Ниже рассмотрены те компоненты, из которых складываются объемно-планировочные параметры пролетов (ширина, высота и шаг колонн). Ширину пролета L- расстояние между продольными разбивочными осями - увязывают с пролетом мостового крана LK и расстоянием К между осью рельса подкранового пути и разбивочной осью, которые определены ГОСТом (рис. V-4). Размер К принимают: 750 мм - при кранах Q < 50 т; 1000 мм (и более, кратно 250 мм) – при кранах Q > 50 т, а так же при устройстве в надкрановой части колонн прохода для обслуживания подкрановых путей. При железобетонных колоннах проходы вдоль подкрановых путей чаще располагают рядом с колоннами. В размер привязки подкранового пути входит зазор (не менее 60 мм) между торцовой плоскостью крана и колоннами, а также расстояние между центром катков крана и его торцовой плоскостью, принимаемое от 125 до 500 мм в зависимости от грузоподъемности кранов. Ширину пролетов, не имеющих мостовых кранов, принимают равной расстоянию между разбивочными осями. Минимально допустимая ширина пролетов, определяемая только условиями технологии производства (габариты и характер оборудования, система его расстановки, ширина проездов и др.), не всегда экономически целесообразна. При выборе ширины пролетов следует учитывать также тенденции развития данной отрасли промышленности, оптимальные возможности изготовления и монтажа конструкций покрытий зданий, грузоподъемность внутрицехового транспорта и т.д. Шаг колонн (расстояние между поперечными разбивочными осями) выбирают с учетом габаритов и способа расстановки технологического оборудования, размеров выпускаемых изделий, вида внутрицеховых подъемно-транспортных средств и других факторов. Так, при крупногабаритном оборудовании и больших изделиях шаг колонн назначают возможно большим, обеспечивая помещениям технологическую гибкость. Увеличение шага колонн в большинстве случаев повышает эффективность использования производственных площадей, но усложняет конструкции покрытия и подкрановых путей здания. Поэтому размер шага колонн всегда обосновывают технико-экономическим расчетом. Наиболее распространены шаги колонн 6 и 12 м. Высота пролетов (расстояние от уровня пола до низа несущих конструкций покрытия) в основном зависит от технологических и санитарно-гигиенических требований. Складывается она в пролетах с мостовыми кранами из расстояния от уровня пола до верха кранового рельса Н1 и расстояния от рельса до низа несущих конструкций покрытия H2 Высоту пролета предварительно определяют суммированием следующих параметров: высоты наибольшего технологического оборудования (при небольших его размерах принимают а > 2, 3 м); просвета между верхом наибольшего оборудования и низом перемещаемого груза, поднятого в верхнее положение (б > 0, 5 м); высоты перемещаемых грузов в транспортном положении (в); расстояния от верха транспортируемого изделия до центра крюка (г > 1 м); расстояния от центра крюка до головки рельса (зависящего от Q крана и принимаемого д = 0, 05...4, 8 м); высоты крана (А = 0, 5...5, 9 м); просвета между верхом крана и низом несущих конструкций покрытия (е > 0, 2 м). Определение высоты бескрановых пролетов или с подвесным транспортом не вызывает затруднений. Следует подчеркнуть, что из-за одного какого-либо технологического агрегата, превышающего по высоте остальное оборудование, нецелесообразно увеличивать высоту всего пролета. В таких случаях иногда решают заглубить высокий агрегат или делают над ним надстройку. Длину пролетов определяют графическим способом – путем расстановки макетов технологического оборудования с соблюдением ширины проездов и проходов или аналитическим способом - делением общей площади цеха, подсчитанной с учетом мощности предприятия, на принятую ширину (как сумму ширины всех пролетов). Наметив основные размеры пролетов, их подчиняют требованиям унификации. Одноэтажные здания, как правило, проектируют с параллельно расположенными пролетами одинаковой ширины и высоты. По требованиям технологии допускается проектировать здания с пролетами взаимно-перпендикулярного направления и разной унифицированной ширины. При разной высоте параллельных пролетов перепады высот рекомендуется совмещать с продольными температурными швами, а величину понижения принимать 1, 2 м и более. При назначении размеров зданий должны быть соблюдены санитар ные нормы, предусматривающие на каждого рабочего не менее 15 м3 объема и не менее 4, 5 м2 площади помещения. Многовариантность технологических компоновок, предлагаемая на стадии обсуждения проекта, при обычном проектировании требует массы чертежей. При макетном проектировании надобность в непроизводительных графических работах отпадает, так как любой предлагаемый вариант получают перестановкой макетов или шаблонов оборудования.
|