Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Математические модели и методы искусственного интеллекта.
Искусственный интеллект реализуется на базе четырех подходов: логического, эволюционного, имитационного и структурного. Основой логического подхода служит булева алгебра и ее логические операторы, в первую очередь, оператор IF (если). Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, а правила логического вывода – как отношения между ними. Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошие результаты достигаются при сравнительно небольшом размере базы знаний. Самоорганизация – процесс самопроизвольного (спонтанного) увеличения порядка, или организации в системе, происходящий под действием внешней среды. Выделяют следующие принципы самоорганизации математических моделей: - неокончательных решений – сохранение достаточной свободы выбора нескольких лучших решений на каждом шаге самоорганизации; - внешнего дополнения позволяет синтезировать истинную модель объекта, скрытую в зашумленных экспериментальных данных, с учетом основанных на новой информации внешних критериях; - массовой селекции позволяет сформировать наиболее целесообразный путь постепенного усложнения самоорганизующейся модели, с тем, чтобы критерий ее качества проходил через свой минимум. Самоорганизующиеся модели служат, в основном, для прогнозирования поведения и структуры систем различной природы. В процессе построения моделей участие человека сведено к минимуму. Эволюционное моделирование представляет собой универсальный способ построения прогнозов состояний системы в условиях задания их предыстории. Общая схема алгоритма эволюции включает: - задание исходной организации системы; - случайные мутации; - отбор для дальнейшего развития той организации, которая является лучшей в рамках некоторого критерия. Под структурным подходом подразумевается построение систем ИИ путем моделирования структуры человеческого мозга. Нейросетевое моделирование применяется в различных областях – бизнесе, медицине, технике, геологии, физике, где нужно решать задачи прогнозирования, классификации или управления. В основе лежит идея построения вычислительного устройства из большого числа параллельно работающих простых элементов – формальных нейронов, которые функционируют независимо друг от друга и связаны между собой однонаправленными каналами передачи информации.
|