![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Прогнозирование на основе парного линейного уравнения регрессии. Точечная и интервальная оценка прогноза
Важным направлением использования уравнений связи является их применение для прогнозирования ожидаемых результатов при заданном уровне факторов для целей управления исследуемой совокупностью. Использование регрессионной модели для прогнозирования состоит в подстановке в уравнение регрессии ожидаемых значений факторных признаков для расчета точечного прогноза результативного признака и его доверительного интервала с заданной вероятностью. Поскольку не все значения результативного признака лежат на линии регрессии, то использование уравнения регрессии для прогнозирования приведет к некоторой погрешности (ошибке) в оценке анализируемого показателя. Можно назвать два источника возникновения этой погрешности. Во-первых, решенное по выборочным данным уравнение регрессии является всего лишь одним из множества возможных по воле случая подобных уравнений. Каждое из них является лучшим или худшим приближением к истинной (генеральной) линии связи. Во-вторых, уравнение регрессии не воспроизводит общую вариацию результативного признака в полном объеме; остаточная вариация вносит свой вклад в величину погрешности (ошибки) прогноза. Ошибка точечного прогноза или ошибка положения линии регрессии Чтобы понять, как строится формула ошибки, обратимся к уравнению линейной регрессии:
Из данной формулы видно, что ошибка положения линии регрессии в прогнозной точке зависит от ошибок отдельных параметров уравнения и от того, как сильно значение признака-фактора отклоняется от его среднего значения. Чем больше разность Доверительные интервалы положения линии регрессии при заданном х определяются выражением
где а – уровень значимости. Однако фактические значения yi отклоняются от уравнения регрессии на величину случайной ошибки . Доверительный интервал индивидуального прогноза
|