Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Важнейшие функциональные группы. · Органическая химия - это раздел химической науки, в котором изучаются соединения углeрода - их строение






ВВЕДЕНИЕ

· Органическая химия - это раздел химической науки, в котором изучаются соединения углeрода - их строение, свойства, способы получения и практического использования.

· Соединения, в состав которых входит углерод, называются органическими.

Кроме углерода, они почти всегда содержат водород, довольно часто - кислород, азот и галогены, реже - фосфор, серу и другие элементы. Однако сам углерод и некоторые простейшие его соединения, такие как оксид углерода (II), оксид углерода (IV), угольная кислота, карбонаты, карбиды и т.п., по характеру свойств относятся к неорганическим соединениям. Поэтому часто используется и другое определение:

· Органические соединения - это углеводороды (соединения углерода с водородом) и их производные.

Благодаря особым свойствам элемента углерода, органические соединения очень многочисленны. Сейчас известно свыше 10 миллионов синтетических и природных органических веществ, и их число постоянно возрастает.

Основные понятия органической химии

Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область — органическая химия.

Несколько причин обусловили проявление углеродом выше отмеченных свойств. Доказано, что энергия связи (прочность связи) С—С сопоставима с прочностью связей С—О. Углерод обладает возможностью проявлять не одну, а целых три разновидности гибридизации орбиталей: в случае 3 -гибридизации образуются четыре гибридных орбитали, имеющие тетраэдрическую ориентацию; сих помощью образуются простыековалентные связи; в случае sp2 -гибридизации образуются три гибридные орбитали, ориентированные в одной плоскости, и с их помощью образуются двойные кратные связи; наконец, с помощью двух sp -гибридизованных орбиталей, имеющих линейную ориентацию, между атомами углерода возникают тройные кратные связи. Сейчас хорошо известно, что атомы углерода способны образовывать простые, двойные и тройные связи не только друг с другом, но также и с другими элементами.

Теория химического строения А. М. Бутлерова. Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений отих химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым.

Основные положения этой теории (иногда ее называют структурной):

1) атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности;

2) свойства вещества определяются не только качественным составом, но и его строением, взаимным влиянием атомов, как связанных между собой химическими связями, так и непосредственно не связанных;

3) строение молекул может быть установлено на основе изучения их химических свойств.

Важным следствием теории строения был вывод о том, что каждое органическое соединение должно иметь одну химическую формулу, отражающую ее строение. Такой вывод теоретически обосновывал хорошо известное уже тогда явление изомерии, — существование веществ с одинаковым молекулярным составом, но обладающих различными свойствами.

Структурные формулы. Существование изомеров потребовало использования не только простых молекулярных формул, но и структурных формул, отражающих порядок связи атомов в молекуле каждого изомера. В структурных формулах ковалентная связь обозначается черточкой. Как и в структурных формулах неорганических веществ, каждая черточка означает общую электронную пару, связывающую атомы в молекуле.

Структурная формула — изображение химических связей между атомами в молекуле с учетом их валентности.

Классификация органических соединений. Для классификации органических соединений по типам и построенияих названий в молекуле органического соединения принято выделять углеродный скелет и функциональные группы.

Углеродный скелет представляет собой последовательность химически связанных между собой атомов углерода. Функциональные группы образуют все атомы, кроме водорода, или группы атомов, связанные с атомом углерода.

Типы углеродных скелетов. Углеродные скелеты разделяют на ациклические (не содержащие циклов), циклические и гетероциклические.

В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода. Исторически сложилась традиция не рассматривать такие гетероатомы как функциональные группы, а считатьих частью углеродного скелета.

В самих углеродных скелетах нужно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя — вторичным, тремя — третичным и четырьмя — четвертичным.

Поскольку атомы углерода могут образовывать между собой не только одинарные, но и кратные (двойные и тройные) связи, то соединения, содержащие только одинарные связи углерод—углерод, называют насыщенными, соединения с кратными углерод углеродными связями называют ненасыщенными. Соединения, в которых атомы углерода связаны только с атомами водорода, называют углеводородами.

Углеводороды признаны в органическойхимии родоначальными. Разнообразные соединения рассматриваются как производные углеводородов, полученные введением в них функциональных групп.

Функциональные группы. В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие химические и физические свойства органических соединений, называют функциональными группами.

Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу.

Важнейшие функциональные группы

Функциональные группы Класс соединения
обозначение название
- F, - Cl, - Br, - I галоген Галогенопроизводные углеводородов
- OH гидроксил спирты, фенолы
карбонил альдегиды, кетоны
карбоксил карбоновые кислоты
- NH2 аминогруппа амины
- NO2 нитрогруппа нитросоединения

Соединения, которые содержат несколько функциональных групп, называют полифункциональными.

Гомологический ряд. Для описания органических соединений полезным является понятие гомологического ряда. Гомологический ряд образуют соединения, отличающиеся друг от друга на группу —СН2— и обладающие сходными химическими свойствами. Группы СН2 называются гомологической разностью.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель — метан СН4. Гомологами метана являются: этан С2Н6, пропан С3Н8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан С7Н16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет СnН2n+2, где п — число атомов углерода.

Гомологические ряды могут быть построены для всех классов органических соединений. Зная свойства одного из членов гомологического ряда, можно сделать выводы о свойствах других представителей того же ряда.

Номенклатура органических соединений. В настоящее время признана систематическая номенклатура ИЮПАК (IUРАС — Международный союз теоретической и прикладной химии).

Среди вариантов систематических номенклатур, рекомендуемых ИЮПАК, наиболее распространенной является заместительная номенклатура. В соединении выделяется некая основа, в которой произведено замещение атомов водорода на иные атомы или группы. Для понимания общих принципов построения названий органических соединений по заместительной номенклатуре необходимо в первую очередь усвоить номенклатуру углеводородов. Вместе с тем правила ИЮПАК позволяют употреблять названия органических соединений, построенные на основе устаревших тривиальной и рациональной номенклатур.

По правилам ИЮПАК название органического соединения строится из названия главной цепи, образующего корень слова, и названий функций, используемых в качестве приставок или суффиксов.

Для правильного построения названия необходимо провести выбор главной цепи и нумерацию атомов углерода в ней.

В заместительной номенклатуре название соединения представляет собой составное слово, корень которого включает название родоначальной структуры. Названия заместителей обозначаются префиксами (приставками) и суффиксами.

Заместитель — это любой атом или группа атомов, замещающих атом водорода в родоначальной структуре.

Функциональная группа — это атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу.

Характеристическая группаэто функциональная группа, связанная с родоначальной структурой. Для построения названия в первую очередь определяют тип характеристической группы (если она присутствует). Когда характеристических групп в соединении несколько, то выделяют старшую характеристическую группу. Для характеристических групп условно установлен порядок старшинства. В таблице эти группы приведены в порядке убывания старшинства. Затем определяют родоначальную структуру, в которую обязательно должна входить старшая характеристическая группа.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал