Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Костная ткань и суставы. Их реакция на мышечную систему.






Скелет — комплекс костей, различных по форме и величине. У человека более 200 ко­стей (85 парных и З6 непарных), которые в зависимости от формы и функции делятся на: трубчатые (кости конечностей); губчатые (вы­полняют в основном защитную и опорную функции — ребра, грудина, позвонки и др.); плоские (кости черепа, таза, поясов конечностей); сме­шанные (основание черепа).

В каждой кости содержатся все виды тканей, но преобладает кост­ная, представляющая разновидность соединительной ткани. В состав кости входят органические и неорганические вещества. Неорганичес­кие (65—70% сухой массы кости) — это в основном фосфор и кальций. Органические (30—35%) — это клетки кости, коллагеновые волокна. Эластичность, упругость костей зависит от наличия в них органичес­ких веществ, а твердость обеспечивается минеральными солями. Со­четание органических веществ и минеральных солей в живой кости придает ей необычайную крепость и упругость, которые можно срав­нить с твердостью и упругостью чугуна, бронзы или меди. Кости детей более эластичны и упруги — в них преобладают органические вещест­ва, кости же пожилых людей более хрупки — они содержат большое количество неорганических соединений.

На рост и формирование костей, существенное влияние показыва­ют социально-экологические факторы: питание, окружающая среда и т.д. Дефицит питательных веществ, солей или нарушение обменных процессов, связанных с синтезом белка, незамедлительно отражаются па росте костей. Недостаток витаминов С, D, кальция или фосфора нарушает естественный процесс обызвествления и синтеза белка в костях, делает их более хрупкими. На изменение костей влияют и фи­зические нагрузки. При систематическом выполнении значительных по объему и интенсивности статических и динамических упражнений кости становятся более массивными, в местах прикрепления мышц формируются хорошо выраженные утолщения — костные выступы, бугры и гребни. Происходит внутренняя перестройка компактного костного вещества, увеличиваются количество и размеры костных клеток, кости становятся значительно прочнее. Правильно организо­ванная физическая нагрузка при выполнении силовых и скоростно-силовых упражнений способствует замедлению процесса старения костей.

Скелет человека состоит из позвоночника, черепа, грудной клетки, поясов конечностей и скелета свободных конечностей. Позво­ночник, состоящий из 33—34 позвонков, имеет пять отделов: шейный (7 позвонков), грудной (12), поясничный (5), крестцовый (5), копчико­вый (4—5). Позвоночный столб позволяет совершать сгибания вперед и назад, в стороны, вращательные движения вокруг вертикальной оси. В норме он имеет два изгиба вперед (шейный и поясничный лордозы) и два изгиба назад (грудной и крестцовый кифозы). Названные изгибы имеют функциональное значение при выполнении различных дви­жений (ходьба, бег, прыжки, ку­вырки и т.д.), они ослабляют толчки, удары и т.п., выполняя роль амортизатора.

Грудная клетка образова­на 12 грудными позвонками, 12 парами ребер и грудной кос­тью (грудиной), она защищает сердце, легкие, печень и часть пищеварительного тракта; объем грудной клетки может изменять­ся в процессе дыхания при со­кращении межреберных мышц и диафрагмы.

Череп защищает от внешних воздействий головной мозг и центры органов чувств. Он со­стоит из 20 парных и непарных костей, соединенных друг с дру­гом неподвижно, кроме нижней челюсти. Череп соединяется с позвоночником при помощи двух мыщелков затылочной кости с верхним шейным позвон­ком, имеющим соответствующие суставные поверхности.

Скелет верхней конечности образован плечевым поясом, со­стоящим из двух лопаток и двух ключиц, и свободной верхней ко­нечностью, включающей плечо, предплечье и кисть. Плечо — это одна плечевая трубчатая кость; предплечье образовано лучевой и локтевой костями; скелет кисти делится на запястье (8 кос­тей, расположенных в два ряда), пястье (5 коротких трубчатых костей) и фаланги пальцев (14 фаланг).

Скелет нижней конечности обра­зован тазовым поясом (2 тазовых кости и крестец) и скелетом свобод­ной нижней конечности, который состоит из трех основных отделов — бедра (одна бедренная кость), голе­ни (большая и малая берцовые кости) и стопы (предплюсна — 7 костей, плюсна — 5 костей и 14 фаланг).

Все кости скелета соединены по­средством суставов, связок и сухо­жилий. Суставы — по­движные соединения, область со­прикосновения костей в которых покрыта суставной сумкой из плот­ной соединительной ткани, сраста­ющейся с надкостницей сочленяю­щихся костей. Полость суставов герметично закрыта, она имеет не­большой объем, зависящий от формы и размеров сустава. Сустав­ная жидкость уменьшает трение между поверхностями при движе­нии, эту же функцию выполняет и гладкий хрящ, покрывающий сус­тавные поверхности. В суставах могут происходить сгибание, разгиба­ние, приведение, отведение, вращение.

Опорно-двигательный аппарат состоит из костей, связок, мышц, мышечных сухожилий. Большинство сочленяющихся костей соединены связками и мышечными сухожилиями, образуя суставы ко­нечностей, позвоночника и др. Основные функции — опора и переме­щение тела и его частей в пространстве.

Главная функция суставов — участвовать в осуществлении движе­ний. Они выполняют также роль демпферов, гасящих инерцию движе­ния и позволяющих мгновенно останавливаться в процессе движения. При систематических занятиях физическими упражнениями и спор­том суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И наоборот, при отсутствии движений разрыхляется суставный хрящ и изменяют­ся суставные поверхности, сочленяющиеся кости, появляются боле­вые ощущения, возникают воспалительные процессы.

2.13.Воздействие физо на мышечную систему.

Существует два вида мускулатуры: гладкая (непроизволь­ная) и поперечно-полосатая (произвольная). Гладкие мышцы распо­ложены в стенках кровеносных сосудов и некоторых внутренних орга­нах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы — это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспе­чивающая ритмическую работу сердца на протяжении всей жизни. Ос­нова мышц — белки, составляющие 80—85% мышечной ткани (исклю­чая воду). Главное свойство мышечной ткани — сократимость, она обеспечивается благодаря сократительным мышечным белкам — акти­ну и миозину.

Мышечная ткань устроена очень сложно. Мышца имеет волокнис­тую структуру, каждое волокно — это мышца в миниатюре, совокуп­ность этих волокон и образуют мышцу в целом. Мышечное волокно, в свою очередь, состоит из миофибрилл. Каждая миофибрилла разделена на чередующиеся светлые и темные участки. Темные участки — про-тофибриллы состоят из длинных цепочек молекул миозина, светлые образованы более тонкими белковыми нитями актина. Когда мышца находится в несокращенном (расслабленном) состоянии, нити актина и миозина лишь частично продвинуты относительно друг друга, при­чем каждой нити миозина противостоят, окружая ее, несколько нитей актина. Более глубокое продвижение относительно друг друга обу­словливает укорочение (сокращение) миофибрилл отдельных мышеч­ных волокон и всей мышцы в целом.

К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна. Двигательные (эфферентные) нервные волокна пере­дают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чув­ствительные волокна передают импульсы в обратном направле­нии, информируя центральную нервную систему о деятельности мышц. Через симпатические нервные волокна осуществляется регуляция обменных процессов в мышцах, посредством чего их де­ятельность приспосабливается к изменившимся условиям работы, к различным мышечным нагруз­кам. Каждую мышцу пронизыва­ет разветвленная сеть капилля­ров, по которым поступают необ­ходимые для жизнедеятельности мышц вещества и выводятся про­дукты обмена.

Ске­летные мышцы входят в структу­ру опорно-двигательного аппара­та, крепятся к костям скелета и при сокращении приводят в дви­жение отдельные звенья скелета, рычаги. Они участвуют в удержа­нии положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жева­нии, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до со­кратительных структур (мио­фибрилл), которые, сокращаясь, выполняют определенный двига­тельный акт — движение или на­пряжение. Вся скелетная мускулатура состоит из поперечно-полосатых мышц. У человека их насчитывается около 600 и большин­ство из них — парные. Их масса составляет 35—40% общей массы тела взрослого человека. Скелетные мышцы снаружи покрыты плотной соединительнотканной оболочкой. В каждой мышце различают актив­ную часть (тело мышцы) и пассивную (сухожилие). Мышцы делятся на длинные, короткие и широкие.

Мышцы, действие которых направлено противоположно, называ­ются антагонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом каче­стве. У человека чаще встречаются веретенообразные и лентовидные. Веретенообразные мышцы расположены и функционируют в районе длинных костных образований конечностей, могут иметь два брюшка (двубрюшные мышцы) и несколько головок (двуглавые, трехглавые, четырехглавые мышцы). Лентовидные мышцы имеют различную ши­рину и обычно участвуют в корсетном образовании стенок туловища. Мышцы с перистым строением, обладая большим физиологическим поперечником за счет большого количества коротких мышечных структур, значительно сильнее тех мышц, ход волокон в которых имеет прямолинейное (продольное) расположение. Первые называют сильными мышцами, осуществляющими малоамплитудные движения, вторые — ловкими, участвующими в движениях с большой амплиту­дой. По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

Сила мышцы определяется весом груза, который она может поднять на определенную высоту (или способна удерживать при максималь­ном возбуждении), не изменяя своей длины.. Сила мышцы зависит от суммы сил мышечных волокон, их сократительной способности; от ко­личества мышечных волокон в мышце и количества функциональных единиц, одновременно возбуждающихся при развитии напряжения; от исходной длины мышиы (предварительно растянутая мышца развивает большую силу); от условий взаимодействия с костями скелета.

Сократительная способность мышцы характеризуется ее абсолют­ной силой, т.е. силой, приходящейся на 1 см2 поперечного сечения мы­шечных волокон. Для расчета этого показателя силу мышцы делят на площадь ее физиологического поперечника (т.е. на сумму площадей всех мышечных волокон, составляющих мышцу). Например: в среднем у человека сила (на 1 см2 попереченого сечения мышцы) икроножной мышцы — 6, 24; разгибателей шеи — 9, 0; трехглавой мышцы плеча — 16, 8 кг.

Центральная нервная система регулирует силу сокращения мышцы путем изменения количества одновременно участвующих в сокращении функциональных единиц, а также частотой посылаемых к ним импульсов. Учащение импульсов ведет к возрастанию величины

напряжения.

В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энер­гию напряжения и кинетическую энергию движения. Различают внут­реннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организ­ма (динамическая работа) в пространстве. Она характеризуется коэф­фициентом полезного действия (КПД) мышечной системы, т.е. отно­шением производимой работы к общим энергетическим затратам (для мышц человека кпд составляет 15—20%, у физически развитых трени­рованных людей этот показатель несколько выше).

При статических усилиях (без перемещения) можно говорить не о работе как таковой с точки зрения физики, а о работе, которую следует оценивать энергетическими физиологическими затратами организма. В целом мышца как орган представляет собой сложное структурное образование, которое выполняет определенные функции, состоит на 72—80% из воды и на 16—20% из плотного ве­щества. Мышечные волокна состоят из мнофибрилл с клеточными ядрами, рибосомамн, митохондриями, саркоплазматическим ретику-люмом, чувствительными нервными образованиями — проприорецепторами и другими функциональными элементами, обеспечивающими синтез белков, окислительное фосфорилирование и ресинтез аденозинтрифосфорной кислоты, транспортировку веществ внутри мышечной клетки и т.д. в процессе функционирования мышечных во­локон. Важным структурно-функциональным образованием мышцы является двигательная, или нейромоторная, единица, состоящая из одного мотонейрона и иннервируемых им мышечных волокон. Раз­личают малые, средние и большие двигательные единицы в зависи­мости от количества мышечных волокон, задействованных в акте со­кращения.

Система соединительнотканных прослоек и оболочек связывает мышечные волокна в единую рабочую систему, обеспечивающую с по­мощью сухожилий передачу возникающей при мышечном сокраще­нии тяги на кости скелета.

Вся мышца пронизана разветвленной сетью кровеносных и веточ­ками лимфатических сосудов. Красные мышечные волокна обладают более густой сетью кровеносных сосудов, чем белые. Они имеют боль­шой запас гликогена и липидов, характеризуются значительной тони­ческой активностью, способностью к длительному напряжению и вы­полнению продолжительной динамической работы. Каждое красное волокно имеет больше, чем белое, митохондрий — генераторов и по­ставщиков энергии, окруженных 3—5 капиллярами, и это создает ус­ловия для более интенсивного кровоснабжения красных волокон и вы­сокого уровня обменных процессов.

Белые мышечные воюкна имеют миофибриллы, которые толще и сильнее миофибрилл красных волокон, они быстро сокращаются, но не способны к длительному напряжению. Митохондрий белого веще­ства имеют только один капилляр. В большинстве мышц содержатся красные и белые волокна в разных пропорциях. Различают также мы­шечные волокна тонические (способные к локальному возбуждению без его распространения); фазные, способные реагировать на распространяющуюся волну возбуждения как сокращением, так и расслабле­нием; переходные, сочетающие оба свойства.

2.14.Регуляция деятельности организма: нервная и гуморальная.

Нервная система регулирует деятельность организма по­средством изменения силы и частоты биоэлектрических импульсов. В основе деятельности нервной системы лежат процессы возбуждения и торможения, возникающие в нервных клетках. Возбуждение — дея­тельное состояние клеток, когда они трансформируют и передают электрические импульсы другим клеткам; торможение — обратный процесс, направленный на снижение электрической активности и вос­становление. ЦНС регулирует и управляет двигательной деятельнос­тью человека. В процессе физической тренировки она совершенству­ется, более тонко осуществляя взаимодействие процессов возбужде­ния и торможения различных нервных центров, регулирующих работу многих мышечных групп и функциональных систем. Тренировка помогает органам чувств более дифференцированно осуществлять дви­гательные действия, формирует способность к усвоению новых двига­тельных навыков и совершенствованию уже имеющихся.

Железы внутренней секреции, или эндо­кринные железы, вырабатывают особые биологические вещества — гормоны. Гормоны обеспечивают гумораль­ную (через кровь, лимфу, межтканевую жидкость) регуляцию физио­логических процессов в организме, попадая во все органы и ткани. Часть гормонов продуцируется только в определенные периоды, боль­шинство же — на протяжении всей жизни человека. Они могут тормо­зить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, дея­тельность внутренних органов. К железам внутренней секреций отно­сят: щитовидную, околощитовидные, зобную, надпочечники, поджелу­дочную, гипофиз, половые железы и ряд других.Некоторые из перечисленных желез вырабатывают кроме гормонов, еще секреторные вещества (например, поджелудочная железа участ­вует в процессе пищеварения, выделяя секреты в двенадцатиперстную кишку; продуктом внешней секреции мужских половых желез — яичек яв­ляются сперматозоиды и т.д.). Такие. железы называют железами смешан­ной секреции.Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значи­тельные изменения в состоянии орга­низма, в частности в осуществлении обмена веществ и энергии. Они обла­дают дистанционным действием, ха­рактеризуются специфичностью, ко­торая выражается в двух формах: одни гормоны (например, половые) влияют только на функцию некоторых органов и тканей, другие управ­ляют лишь определенными измене­ниями в цепи обменных процессов и в активности регулирующих эти про­цессы ферментов. Гормоны сравни­тельно быстро разрушаются и для поддержания их определенного ко­личества в крови необходимо,, чтобы они неустанно выделялись со­ответствующей железой. Практически все расстройства деятельности желез внутренней секреции вызывают понижение общей работоспо­собности человека. Функция эндокринных желез регулируется цент­ральной нервной системой, нервное и гуморальное воздействие на раз­личные органы, ткани и их функции представляют собой проявление единой системы нейрогуморальной регуляции функций организма.

2.9.Изменение показателей работоспособности дыхательного аппарата в процессе физо.

Весьма тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5, 5—6, 5 л/мин, или 80—90 мл/кг) зарегистрированы у представителей циклических видов спорта — мастеров международного класса, находящихся в момент ис­следования в состоянии наилучшей спортивной формы. Несколько меньшие цифры — около 4, 5—5, 5 л/мин, или 70—80 мл/кг, — отмеча­ются у менее подготовленных мастеров спорта и некоторых первораз­рядников. У спортсменов второго, третьего разряда величина макси­мального потребления кислорода достигает приблизительно 3, 5— 4, 5 л/мин, или 60—70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъ­являют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем аэробных реакций. Для специали­зирующихся в работе максимальной мощности связь между трениро­ванностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и мак­симальным кислородным долгом, отражающим возможный объем анаэ­робных процессов в организме. У таких спортсменов (например, бегу­нов на короткие и средние дистанции) максимальный кислородный долг может достигать 25 л, если это спортсмены очень высокого клас­са. У менее тренированных спортсменов максимальный кислородный долг не превышает 10—15 л.

Большая величина максимального потребления кислорода у высо­котренированных спортсменов тесно связана с большими величинами объема дыхания и кровообращения. Максимальное потребление кисло­рода, равное 5—6 л/мин, сопровождается легочной вентиляцией, до­стигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотре­нированных.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал