Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Кластерный и факторный анализ
Как отмечалось ранее, кластерный анализ можно применять в ходе корреляционного анализа — для исследования взаимосвязей множества переменных, как существенно более простой и наглядный аналог факторного анализа. В этом смысле представляет интерес соотнесение факторного и кластерного анализа. Факторный анализ (глава 16), как известно, позволяет выделить факторы, которые интерпретируются как латентные причины взаимосвязи групп переменных. При этом каждый фактор идентифицируется (интерпретируется) через группу переменных, которые теснее связаны друг с другом, чем с другими переменными. Напомним, что кластерный анализ тоже направлен на выявление групп, в состав которых входят объекты, более сходные друг с другом, чем с представителями других групп. При этом, конечно же, кластерный анализ имеет совершенно иную природу, нежели факторный анализ. Но если в качестве объектов классификации определить переменные, а в качестве мер их различия (близости) — корреляции, то кластерный анализ позволит получить тот же результат, что и факторный анализ. Имеется в виду доступная интерпретации структура взаимосвязей множества переменных. Важно отметить два существенных ограничения факторного анализа. Во-первых, факторный анализ неизбежно сопровождается потерей исходной информации о связях между переменными. И эта потеря часто весьма ощутима: от 30 до 50%. Во-вторых, из требования «простой структуры» следует, что ценность представляет решение, когда группы переменных, которые соответствуют разным факторам, не должны заметно коррелировать друг с другом. И чем теснее эти группы связаны, тем хуже факторная структура, тем труднее факторы поддаются интерпретации. Не говоря уже о случаях иерархической соподчиненности групп. Кластерный анализ корреляций лишен указанных недостатков. Во-первых, классификация при помощи кластерного анализа по определению отражает всю исходную информацию о различиях (связях в данном случае). Во-вторых, он не только допускает, но и отражает степень связанности разных кластеров, включая случаи соподчиненности (иерархичности) кластеров. Таким образом, кластерный анализ является не только более простой и наглядной альтернативой факторного анализа. В указанных отношениях он имеет явные преимущества, которые целесообразно использовать, по крайней мере, до попытки применения факторного анализа. Как начальный этап исследования корреляций, кластерный анализ позволит избавиться от несгруппирован-ных переменных и выявить иерархические кластеры, к которым факторный анализ не чувствителен. Вполне вероятно, что после кластерного анализа отпадет и сама необходимость в проведении факторного анализа. Исключение составляют случаи применения факторного анализа по его прямому назначению — для перехода к факторам как к новым интегральным переменным. Применяя кластерный анализ для исследования структуры корреляций, необходимо помнить о двух обстоятельствах. Во-первых, корреляция является мерой сходства, а не различия — ее величина возрастает (до 1) при увеличении сходства двух переменных. Во-вторых, отрицательные величины корреляции так же свидетельствуют о сходстве переменных, как и положительные, то есть для классификации необходимо использовать только положительные корреляции (их абсолютные значения). ПРИМЕР19.2 В конце главы 16 был рассмотрен пример применения факторного анализа в психосемантическом исследовании. Напомним, что в результате многоэтапной обработки была получена 3-факторная структура для 10 переменных — шкал семантического дифференциала (табл. 19.1). В качестве исходных данных выступали 10 переменных, измеренных для 86 объектов. Для сравнения применим кластерный анализ в отно-шениитехжеданныхдля классификации Юпеременных, используя в качестве меры различия абсолютное значение коэффициента корреляции Пирсона. Таблица 19, 1
|