Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Способность к символизации у приматов






Одна из первых попыток исследования способности животных к употреблению символов вместо реальных множеств была сделана К. Ферстером (Ferster, 1964). После 500 000 опытов ему удалось обучить двух шимпанзе тому, что определенным множествам соответствуют «цифры» (от 1 до 7), выраженные двоичным кодом (от 000 до 111). Выучив эти комбинации, животные могли располагать их в порядке возрастания, но так и не научились использованию цифр для нумерации конкретных объектов.

Матсузава (Matsuzawa, 1985; Matsuzawa et al., 1986) обучал шимпанзе Аи установлению соответствия между различными множествами и арабскими цифрами от 1 до 6. В качестве образца он предъявлял наборы различных предметов, а для выбора — арабские цифры. В тесте с новыми вариантами множеств того же диапазона обезьяна успешно выбирала соответствующие им цифры («маркировала» множества с помощью символов). Можно было предположить, что ее обучение ограничивалось образованием условной связи (ассоциации) между цифрой и конкретными паттернами расположения элементов в соответствующих множествах, а также простым запоминанием всех использованных комбинаций. Однако в более поздней работе (Murofushi, 1997) было доказано, что дело этим не ограничивается, и Аи действительно связывала знаки с признаком «число» и оперировала ими как символами. Она правильно использовала цифры от 1 до 7 для маркировки разнообразных новых множеств, абстрагируясь от паттернов расположения составляющих их элементов, а также их размера, цвета и формы.

Особый вклад в решение вопроса о способности животных к использованию символов для характеристики множеств внесли работы американской исследовательницы Сары Бойзен и ее коллег (Boysen, Berntson, 1989; 1995; Boysen, 1993). Благодаря приемам, специально акцентирующим внимание животного на признаке числа, и постепенному наращиванию сложности предъявляемых задач, им удалось обнаружить у шимпанзе Шебы практически все элементы «истинного счета».

Сначала шимпанзе обучали класть одну и только одну конфету в каждый из шести отсеков специального подноса. Смыслом этой процедуры была демонстрация соответствия «один к одному» между числом отсеков и числом конфет. Следующая задача предназначалась для оценки прочности выработанного соответствия «один к одному» и обеспечения базы для введения арабских цифр. В ответ на предъявление подноса с одной, двумя или тремя конфетами шимпанзе должна была выбрать одну из трех карточек с изображениями такого же числа кружков Авторы особо подчеркивали значение процедуры опыта: конфеты на поднос помещали всегда по очереди, при этом экспериментатор их вслух пересчитывал (демонстрация первого и второго принципов Гельман и Галлистеля — соответствия «один к одному» и упорядоченности, т. е. ординальности). Постепенно сначала одну, потом две и т. д. карточки с изображениями точек стали заменять карточками с изображениями цифр, так что обезьяна должна была использовать эти ранее индифферентные для нее изображения вместо реальных множеств.

Когда Шеба стала уверенно выбирать все три цифры, соответствующие числу конфет на подносе, обучение продолжили с помощью компьютера. Обезьяне показывали на мониторе одну из цифр, а она должна была выбрать карточку с изображением соответствующего числа точек, т. е. применить символы к множествам другого типа, чем использованные при обучении.

По той же методике Шеба освоила еще два символа: цифры 0 и 4, а впоследствии также 5, 6 и 7. Интересно, что, осваивая новые множества, она сначала по очереди прикасалась к каждой из конфет и только после этого выбирала соответствующую цифру. Дополнительные опыты свидетельствуют, что это не было простым подражанием экспериментатору, а действительно неким способом «пересчета» конфет, а также других предметов (батареек, ложек и т. п.).

Для проверки способности Шебы оперировать усвоенными символами провели следующие два теста.

Первый авторы назвали «тестом на функциональный счет». В лаборатории по двум из трех «тайников» раскладывали апельсины таким образом, чтобы их сумма не превышала 4. Шеба обходила все три «тайника» и видела (но не могла достать) находящиеся в них апельсины. Затем обезьяна должна была подойти к «рабочей площадке» и выбрать из разложенных там по порядку цифр ту, которая соответствовала числу апельсинов в тайниках. Оказалось, что уже во второй серии экспериментов (25 проб в каждой) шимпанзе выбирала правильную цифру более чем в 80 % случаев.

Во втором тесте апельсины заменили карточками с цифрами, которые также помещали в любые два из трех «тайников» — сумма цифр также не превышала 4 (тест на «сложение символов»). Использовали следующие комбинации цифр: 1 и 0, 1 и 1, 1 и 2, 1 и 3, 2 и 0, 2 и 2. Как и на предыдущем этапе, Шеба должна была обойти «тайники» и затем найти карточку с цифрой, соответствующей сумме. В первой же серии она выбирала правильную цифру в достоверном большинстве случаев (75 %).

Полученные результаты стали убедительным свидетельством способности шимпанзе усваивать символы, оперировать ими и выполнять операцию, аналогичную сложению, т. е. удовлетворяли двум В критериям «истинного счета».

Наряду с этими классическими опытами к настоящему времени предпринято значительное число попыток обучить животных нескольким ассоциациям между цифрами и множествами. Такие опыты важны, но не позволяют решить вопрос о наличии у них элементов «истинного счета».


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал