Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Бином Ньютона






Имеется формула, называемая биномом Ньютона, которая использует выражения числа сочетаний с повторениями

где а, b – действительные или комплексные числа.

Например:

Коэффициенты называются биномиальными.

Докажем формулу бинома Ньютона по индукции. Доказательство по индукции предполагает:

1) базис индукции – доказательство того, что формула верна для конкретного n, например, для n=1. В нашем случае мы убедились, что формула верна для n=2, 3, 4. Убедимся, что она верна и для n=1.

2) индукционный шаг. Предполагая, что формула верна для некоторого n, убеждаются, что тогда она верна и для n+1.

3) при истинности шагов 1 и 2 заключают, что формула верна для любого n.

Приступим к индукционному шагу.

Возьмем выражение и получим из него выражение для n+1. Очевидно, что это можно сделать путем умножения на a+b:

Преобразуем полученное выражение:

Для выполнения индукционного шага необходимо показать, что это выражение равно выражению:

.

Рассмотрим подвыражение выражения (1): и заменим i на i-1.

Получим , т.е. одинаковые коэффициенты перед выражениями , для числа сочетаний в первом и втором подвыражении выражения (1).Это позволит вынести за скобку. Но тогда в не учтен n-й член подвыражения (суммирование идет до n): тогда, учитывая его, получаем:

Нетрудно видеть, что можно заменить на , кроме того, мы уже доказали, что , поэтому: , что, очевидно, равно выражению:

.

По индукции получаем, что формула бинома Ньютона верна для любого n.

С использованием бинома Ньютона докажем следствие №1 о количестве подмножеств множества из n элементов:

Рассмотрим следствие №2: .

На использовании бинома Ньютона основано понятие производящей функции – функции, позволяющей получать комбинаторные числа без вычисления факториала:

. Здесь – функция, производящая биномиальные коэффициенты.

При n=1 получаем 1+x, т.е. (коэффициент перед 1), (коэффициент перед x).

При n=2 получаем (1+x)2=1+2x+x2, т.е. и т.д.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал