Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Монте-Карло расчета VaR






Метод Монте-Карло, или метод стохастического моделирования, является самым сложным методом расчета VaR, однако его точность может быть значительно выше, чем у других методов. Метод Монте-Карло очень схож с методом исторического моделирования, он также основан на изменении цен активов, только с заданными параметрами распределения (математическим ожиданием, волатильностью). Метод Монте-Карло подразумевает осуществление большого количества испытаний – разовых моделирований развития ситуации на рынках с расчетом финансового результата по портфелю. В результате проведения данных испытаний будет получено распределение возможных финансовых результатов, на основе которого путем отсечения наихудших согласно выбранной доверительной вероятности может быть получена VaR-оценка. Метод Монте-Карло не подразумевает свертывания и обобщения формул для получения аналитической оценки портфеля в целом, поэтому и для результата по портфелю и для волатильностей и корреляций можно использовать значительно более сложные модели. Метод заключается в следующем. По ретроспективным данным (периоду времени) рассчитываются оценки математического ожидания и волатильность. С помощью датчика случайных чисел данные генерируются с помощью нормального распределения и заносятся в таблицу. Далее вычисляется траектория моделируемых цен по формуле натурального логарифма и производится переоценка стоимости портфеля.

Так как оценка VaR методом Монте-Карло практически всегда производится с использованием программных средств, данные модели могут представлять собой не формулы, а достаточно сложные подпрограммы. Таким образом, метод Монте-Карло позволяет использовать при расчете рисков модели практически любой сложности. Преимущество метода Монте-Карло заключается еще и в том, что предоставляется возможность использовать любые распределения. Кроме того, метод позволяет моделировать поведения рынков - трендов, кластеров высокой или низкой волатильности, меняющихся корреляций между факторами риска, сценариев " что–если" и т.д. При этом стоит отметить, что данный метод требует мощных вычислительных ресурсов и при простейших реализациях может оказаться близок к историческому или параметрическому VaR, что приведет к наследованию всех их недостатков.

Недостатком метода оценки рисков VaR является то, что он игнорирует очень многие значительные и интересные детали, необходимые для реального представления рыночных рисков. VaR не учитывает, какой вклад в риск вносит рынок, какие структурные изменения портфеля увеличивают риск, а также какие инструменты хеджирования контролируют специфический риск. Модель не дает информации о наихудшем возможном убытке за пределами значения VaR (при заданном уровне доверия 95% остается неизвестным, какими могут быть потери в оставшихся 5% случаев).

В качестве альтернативной меры оценки рыночного риска может использоваться методология Shortfall, которая представляет собой среднюю величину потерь, превышающих VaR. Shortfall - более консервативная мера риска, чем VaR. Для одного и того же уровня вероятности Shortfall требует резервировать больший капитал. Таким образом, он позволяет учитывать большие потери, которые могут произойти с небольшой вероятностью. Он также более адекватно позволяет оценить риск в таком распространенном на практике случае, когда распределение потерь имеет «толстые хвосты» функции распределения (отклонения на краях распределения плотности вероятностей от нормального распределения).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал