Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Глава 3. Определители n-го порядка.






В настоящей главе понятие определитель обобщается максимально: будем считать порядок определителя произвольным. Изучая определители 2-го и 3-го порядков, всё время имелась в виду целевая задача: решение системы линейных уравнений. Потом были обнаружены дополнительные возможности определителей в приложениях к задачам геометрии и физики. Так как для числа измерений больше трёх мы не можем представить себе реальных геометрических образов, то будем считать целью развития понятия определитель – решение систем линейных уравнений с неизвестными: x 1, x 2, …, .

При переходе от определителя 2-го порядка к определителю 3-го порядка использовалось соответствие:

квадратная матрица: A = → определитель: =| A |= d,

причём каждый член определителя должен формироваться по правилу: это произведение элементов определителя, взятых по одному из каждой строки и каждого столбца:

· ·…· общий член определителя.

Число членов определителя: определяется перестановкой = n! Остаётся определить знак каждого члена определителя.

Очевидно, поиск геометрических схем определения знака члена определителя – бесперспективен! Нужно искать совсем другие схемы решения этой задачи. А значит, задачи вычисления определителя - го порядка!


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал