Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Где U0 — электротон в точке приложения электрода; λ — постоянная длины, на которой электротон снижается в е раз (т.е. до 37 %).
где R м — удельное сопротивление мембраны; R I— удельное сопротивление аксоплазмы; d ‑ диаметра волокна.
При х = λ U = 37 % U0; При х = 4 λ U = 2 % U0 . Постоянная длины зависит от R м, R I и диаметра волокна (d). Таким образом, λ тем больше, чем больше R м и d.
В толстых волокнах электротон при прочих равных условиях распространяется дальше, чем в тонких. Специального внимания заслуживают моменты становления и исчезновения градиентов электротона в волокне[Б23]. Быстрее прочих заряжается ближайшая к источнику, медленнее всех - наиболее удаленная часть мембраны (рис. 210022207).
Рис. 210022207. Затухание электротонических электротонических изменений мембранного потенциала вдоль волокна в моменты нарастающей деполяризации (t1), достижения максимального уровня подпороговой деполяризации (t2), реполяризации (t3).
Таким образом, электротон распространяется от точки исходного изменения мембранного потенциала ([Б24] участка под раздражающим электродом) в соседние области, но это распространение идет с затуханием (декрементом). На рис. 210022133 показаны процессы возникновения и затухания электротона.
Рис. 210022133. Развитие электротонического эффекта прямоугольного стимула во времени для различных точек волокна.
|