Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вектор. Основные свойства.Стр 1 из 30Следующая ⇒
Определение. Вектор – Упорядоченную совокупность n вещественных чисел называютn -мерным вектором, а числа - компонентами, или координатами, вектора. Пример 1.1. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент. Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или `a. Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны. Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) ¹ Операции над векторами. Произведением вектора на действительное число l называется вектор Суммой векторов и называется вектор . Пространство векторов. N - мерное векторное пространство R n определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение. Линейная независимость. Система n-мерных векторов называется линейно зависимой, если найдутся такие числа , из которых хотя бы одно отлично от нуля, что выполняется равенство ; в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все . Геометрический смысл линейной зависимости векторов в R 3, интерпретируемых как направленные отрезки, поясняют следующие теоремы. Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой. Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны. Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны. Левая и правая тройки векторов. Тройка некомпланарных векторов называется правой, если наблюдателю из их общего начала обход концов векторов в указанном порядке кажется совершающимся по часовой стрелке. B противном случае - левая тройка. Все правые (или левые) тройки векторов называются одинаково ориентированными. Базис и координаты. Тройка некомпланарных векторов в R 3 называется базисом, а сами векторы - базисными. Любой вектор может быть единственным образом разложен по базисным векторам, то есть представлен в виде (1.1) числа в разложении (1.1) называются координатами вектора в базисе и обозначаются . Ортонормированный базис. Если векторы попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать . Будем предполагать, что в пространстве R 3 выбрана правая система декартовых прямоугольных координат . Пример 1.2. Найдите угол между векторами и , где и - единичные векторы и угол между и равен 120о. Решение. Имеем: , , , значит , значит Окончательно имеем: . Пример 1.3. Зная векторы и , вычислите площадь треугольника ABC. Решение. Обозначая площадь треугольника ABC через S, получим: . Тогда , , Пример 1.4. Даны два вектора и . Найдите единичный вектор , ортогональный векторам и и направленный так, чтобы упорядоченная тройка векторов , , была правой. Решение. Обозначим координаты вектора относительно данного правого ортонормированного базиса через . Поскольку , , то , . По условию задачи требуется, чтобы и . Имеем систему уравнений для нахождения : Из первого и второго уравнений системы получим , . Подставляя и в третье уравнение, будем иметь: , откуда . Используя условие , получим неравенство или С учетом выражений для и перепишем полученное неравенство в виде: , откуда следует, что . Итак, , , .
|