Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Условие резонансаСтр 1 из 4Следующая ⇒
Резонансом токов в цепи с параллельно соединенными катушкой индуктивности и емкостью (рис. 6.1, а) называется режим, при котором токи в ветвях превышают ток, потребляемый из сети, и возникает при совпадении частоты питающего напряжения с частотой собственных колебаний контура . Электрическую цепь, в которой возникает резонанс токов - параллельный контур - широко используют в практике. Так, резонансные цепи радиоприёмных и передающих устройств выполнены по схеме параллельного контура. Рис. 6.1. Параллельный контур: а - схема сопротивлений; б - схема проводимостей
При резонансе токов происходит обмен энергией между катушкой индуктивности и конденсатором, а электрическая сеть только восполняет потери. (В случае идеального контура, при отсутствии потерь, ток, потребляемый из сети равен 0). Для существования такого обмена необходимо, чтобы реактивная мощность катушки индуктивности была равна мощности конденсатора - энергетическое условие резонанса , где - мгновенное значение мощности индуктивности; - мгновенное значение мощности емкости при резонансе. Электрическое условие резонанса, показывающее соотношения между токами катушки и конденсатора при достижении резонанса, проще получить, рассматривая эквивалентную схему проводимостей (рис. 6.1, б). Для схемы (рис. 6.1, б) имеем: и . Откуда получаем, что для достижения резонанса необходимо, чтобы реактивные составляющие токов катушки и конденсатора были равны: или (6.2) Записав выражения для реактивных составляющих токов через соответствующие проводимости и получаем, что для достижения резонанса токов необходимо, чтобы реактивные проводимости катушки индуктивности и конденсатора были равны: (6.3) - параметрическое условие резонанса. Параметрическое условие резонанса позволяет получить выражение для резонансной частоты параллельного контура. Действительно, и . После подстановки в (6.3) с учетом того, что и получим уравнение . (6.4) При выполнении одного из условий резонанса остальные выполняются автоматически. Добротность контура показывает во сколько раз вынужденная реактивная составляющая тока больше тока, потребляемого из сети . (6.5)
|