Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оценка математического ожидания (средней величины).






Пусть распределение значений количественного признака в большой выборке () известно и записано в табличной форме:

Значение, Частота,
Итого

Выборочные среднее и дисперсия рассчитываются по формулам:

(4.1)

(4.2)

Величины и являются оценками параметров генеральной совокупности: математического ожидания и дисперсии . Оценка является случайной величиной, распределенной по нормальному закону. Величина является центрированной (математическое ожидание равно нулю) и нормированной (дисперсия равна 1), поэтому для нахождения квантилей распределения можно использовать таблицы функции распределения стандартного нормального распределения.

Истинное значение параметра можно оценить при помощи доверительного интервала, который его включает

, (4.3)

где доверительная вероятность (надежность оценки), а

уровень значимости, то есть вероятность ошибки.

Величина предельной ошибки равна:

· повторная выборка

, (4.4)

· бесповторная выборка

. (4.5)

Если объем генеральной совокупности существенно больше объема выборки, либо неизвестен, то пользуются формулой (4.4).

Средние ошибки выборки находят по формулам

и . (4.6)

Интервал может быть двусторонним, либо односторонним.

 

Пример 4.1.Произведены измерения признака, распределенного на элементах генеральной совокупности неизвестного объема. Результаты измерений и вычислений приведены в таблице.
№ п/п
        1, 98 3, 92 19, 6
        0, 98 0, 96 9, 6
        0, 02 0, 0004 0, 008
        1, 02 1, 04 11, 44
        2, 02 4, 08 16, 32
Итого           56, 968

Точечные оценки находим по формулам (4.1) и (4.2).

; ; .

· правосторонний интервал, .

По таблице нормального распределения (Приложение 1) находим .

По формуле (4.4) найдем .

Следовательно, с вероятностью 0, 95.

· левосторонний интервал, .

Проводим те же вычисления и находим: с вероятностью 0, 95.

· двусторонний интервал, .

Так как интервал двусторонний, квантиль распределения находим для : .

По формуле (4.4) найдем .

Вычисляем левую и правую границы интервала: ; .

Получили: с вероятностью 0, 95.

Если объем выборки небольшой , то методика расчета доверительных интервалов немного изменяется. Для сгруппированных данных выборочное среднее определяем, как и ранее (4.1), а дисперсию по формуле:

. (4.7)

Для не сгруппированных данных используем формулы:

(4.8)

. (4.9)

Величина описывается стандартным распределением Стьюдента с степенями свободы, поэтому для нахождения квантилей распределения используют таблицы распределения (Приложение 2).

Предельная ошибка для повторной выборки будет равна

. (4.10)

Пример 4.2.Произведены измерения признака, распределенного на элементах генеральной совокупности неизвестного объема. Результаты измерений и вычислений приведены в таблице. По формулам (4.1) и (4.7) получаем точечные оценки.
№ п/п
        1, 9 3, 61 3, 61
        0, 9 0, 81 2, 43
        0, 1 0, 01 0, 03
        1, 1 1, 21 2, 42
        2, 1 4, 41 4, 41
Итого           12, 9

; ; .

· правосторонний интервал, .

По таблице распределения (Приложение 2) для односторонней критической области и числа

степеней свободы находим .

По формуле (4.10) найдем .

Следовательно, с вероятностью 0, 95.

· левосторонний интервал, .

Находим: с вероятностью 0, 95.

· двусторонний интервал, .

Для двусторонней критической области, квантиль распределения .

По формуле (4.10) найдем .

Вычисляем левую и правую границы интервала: ; .

Получили: с вероятностью 0, 95.

Если задана предельная ошибка и доверительная вероятность, из формул (4.4) и (4.10) можно найти необходимое количество измерений (объем выборки). Например, из (4.4) при заданных находим:

(4.11)

Пример 4.3.В условиях Примера 4.1 определить необходимое число измерений, если и . Из таблиц (Приложение 1) для двустороннего интервала находим . По формуле (4.11) получаем ; то есть .

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал