Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Показатели конкуренции.






Для оценки интенсивности конкуренции используется показатель – индекс Герфиндаля, вычисляемый на основе данных о доле производства (или доходов) отдельных групп в совокупном объёме производства (или доходов):

(3.13)

где − доля й организации в общем объеме реализации (производства) продукции заданного ассортимента; − объем реализации го предприятия отрасли; общий объем реализации предприятий отрасли.

Индекс Герфиндаля увеличивается по мере роста концентрации в отрасли и достигает при чистой монополии 1. В отрасли (на рынке), где действуют 100 равномощных предприятий с равными долями, .

Индекс Герфиндаля не учитывает ранги предприятий. Этого недостатка лишен индекс Розенблюта, который рассчитывается с учетом порядкового номера предприятия, полученного на основе ранжирования долей от максимума к минимуму:

. (3.14)

Индекс Розенблюта изменяется от 0 до 1, причем равен 1 при чистой монополии.

Пример 3.3.Определить индексы Герфиндаля и Розенблюта для групп предприятий, используя данные таблицы производства минеральных удобрений предприятиями химической промышленности России в 1997 г.:
Годовая мощность выпуска минеральных удобрений, тыс т Количество предприятий Произведено продукции в январе- августе 1997 г., тыс.т
Менее 100 100-500 500-1000 Свыше 1000    
Итого    

 

Индекс Герфиндаля будет равен (3.13):

Индекс Розенблюта вычислим, располагая доли в порядке убывания весов (3.14):

3.4. Показатели концентрации.

Для оценки неравномерности распределения объёма изучаемого признака между группами абсолютные показатели числа элементов в группе (например, число банков и городов) и размера изучаемого признака (например, прибыль банка или численность населения) выражают в относительных показателях – в долях или процентах к итогу. Затем рассчитывают два ряда накопленных относительных частот. Кривая кумулятивных итогов для двух отдельных групп признака (например, число городов и численность населения, число банков и их прибыль) называется кривойЛоренца.

       

Рис. 3.1. Кривая Лоренца.

Для построения графика концентрации, т.е. кривой Лоренца, по оси абсцисс откладывают накопленные доли общего числа элементов совокупности (например, накопленные доли городов), а по оси ординат - накопленные доли по объёму изучаемого показателя (доли численности населения).

Чем дальше линия фактической концентрации (кривая Лоренца), построенная по указанным координатам, отклоняется от диагонали квадрата – линии равномерного распределения, тем выше уровень концентрации, т.е. тем более неравномерно распределен объём изучаемого показателя между единицами (группами) статистической совокупности. Чем ближе кривая Лоренца к прямой (диагонали квадрата), тем распределение признака более равномерное, т.е. концентрация меньше (Рис. 3.1).

Сопоставления кривых Лоренца за разные периоды позволяет выявить тенденции в неравномерности распределения объёма признака между группами. Такие сопоставления широко распространены в статистике, например, изучение распределения объёма денежных доходов между различными группами населения, анализ степени концентрации банковского капитала, сравнение концентрации объёма производства в различных отраслях промышленности и т.д.

Для количественного измерения концентрации используется показатель, называемый коэффициентом (индексом) Джини , т.е. отношение площади , ограниченной линией равномерного распределения (диагональ квадрата) и кривой Лоренца, к половине площади квадрата:

. (3.15)

Для равномерного распределения коэффициент Джини равен нулю, в условиях же полной концентрации он равен 1. Коэффициент Джинирассчитывается по формуле:

, (3.16)

где и - накопленные суммы удельных весов единиц распределения и кумулятивные итоги объёмного показателя, представленные по осям абсцисс и ординат, соответственно, в форме обычных относительных величин – не процентов.

Если одинаковы для всех и равны , то формула (3.16) примет вид:

,

а учитывая, что и , окончательно:

. (3.17)

 

Пример 3.4.Определить коэффициент Джини для распределения общего объема денежных доходов населения, используя данные по 20-процентным группам населения за 2009 г.:
20-процентные группы населения: Удельный вес населения, Накопленная сумма удельных весов, Доля доходов Накопленная сумма доли доходов,
1 (с наименьшими доходами) 0, 2 0, 2 0, 051 0, 051
  0, 2 0, 4 0, 098 0, 149
  0, 2 0, 6 0, 148 0, 297
  0, 2 0, 8 0, 225 0, 522
5 (с наибольшими доходами) 0, 2 1, 0 0, 478 1, 0

По формуле (3.17) получаем:

.

Для сравнения, по данным Росстата коэффициент Джини за 2010 год равен 0, 42.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал