Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Спецификация регрессионной модели. Методы отбора факторных переменных.






Парная регрессия может дать хороший результат при модели­ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи­ческих переменных контролировать нельзя, т. е. не удается обес­печить равенство всех прочих условий для оценки влияния одно­го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост­роить уравнение множественной регрессии:

Такого рода уравнение может использоваться при изучении потребления. Тогда коэффициенты — частные производные потребления по соответствующим факторам :

в предположении, что все остальные постоянны.

В 30-е гг. XX в. Кейнс сформулировал свою гипотезу потребительской функции. С того времени исследователи неод­нократно обращались к проблеме ее совершенствования. Совре­менная потребительская функция чаще всего рассматривается как модель вида:

где С — потребление; у — доход; Р — цена, индекс стоимости жизни; М — наличные деньги; Z — ликвидные активы.

При этом

 

Множественная регрессия широко используется в решении проблем спроса, доходности акций; при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов эконометрики. Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Построение уравнения множественной регрессия начинается с решения вопроса о спецификации модели. Спецификация модели включает в себя два круга вопросов: отбор фак­торов и выбор вида уравнения регрессии.

Требования к факторам.

1 Они должны быть количественно измеримы.

2.Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Разновидностью интеркоррелированности факторов является мультиколлинеарность - наличие высокой линейной связи между всеми или несколькими факторами.

Причинами возникновения мультиколлинеарности между призанками являются:

1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;

3. Факторные признаки, являющиеся составными элементами друг друга;

4. Факторные признаки, по экономическому смыслу дублирующие друг друга.

5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0, 8 (rxi xj) и др.

Мультиколлинеарность может привести к нежелатель­ным последствиям:

1) оценки параметров становятся ненадежными, обна­руживают большие стандартные ошибки и меняются с из­менением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

2) затрудняется интерпретация параметров множест­венной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;

3) нельзя определить изолированное влияние факторов на результативный показатель.

Включение в модель факторов с высокой интеркорреляцией (Ryx1 Rx1x2) может привести к ненадежности оценок коэф-ов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретированными. Включаемые во множ.регрессию факторы должны объяснить вариацию независимой переменной. Отбор факторов производится на основе качественного теоретико-экономического анализа, который обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Если факторы коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал