Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Компоненты Delphi для представления графической информации
Канва представляет собой область компонента, на которой можно рисовать или отображать готовые изображения. Она содержит свойства и методы, существенно упрощающие графику Delphi Канва имеет свойство Pixels. Это свойство представляет собой двумерный массив, который отвечает за цвета канвы. Brush Pen Style/ 14. Создание реалистических изображений: алгоритм плавающего горизонта. Главная идея данного метода заключается в сведении трехмерной задачи к двумерной путем пересечения исходной поверхности последовательностью параллельных секущих плоскостей, имеющих постоянные значения координат х, у или z. F(x, у, z) = 0. F(x, y, z)=0, Поскольку в приложениях в основном интересуются описанием поверхности, этот алгоритм работает в пространстве изображения. Главная идея данного метода заключается в сведении трехмерной задачи к двумерной путем пересечения исходной поверхности последовательностью параллельных секущих плоскостей, имеющих постоянное значение координат x, y, или z (рис.18).
Если полученные кривые спроецировать на плоскость z=0, то можно сформулировать идею алгоритма удаления невидимых участков исходной поверхности. Алгоритм сначала упорядочивает плоскости z=const по возрастанию расстояния до них от точки наблюдения. Затем в каждой плоскости, начиная с ближней к точке наблюдения, строится кривая, лежащая на ней, т.е. для каждого значения координаты x в пространстве изображения определяется соответствующее значение y. Алгоритм удаления невидимых линий заключается в следующем: если для текущей плоскости при некотором заданном значении x соответствующее значение y на кривой больше значения y на всех предыдущих кривых при этом значении x, то текущая кривая видима в этой точке; в противном случае она невидима. Реализация данного алгоритма достаточно проста. Для хранения максимальных значений y при каждом значении x используется массив, длина которого равна числу различимых точек (разрешению) по оси x в пространстве изображения. Значения, хранящиеся в этом массиве, представляют собой текущие значения " горизонта". Поэтому по мере рисования каждой очередной кривой этот горизонт «всплывает». Фактически этот алгоритм работает каждый раз с одной линией. Алгоритм работает хорошо до тех пор, пока какая-нибудь очередная кривая не окажется ниже самых первых кривых (z6 на рис.18). Подобные кривые, естественно, видимы и представляют собой нижнюю сторону исходной поверхности, однако алгоритм будет считать их невидимыми. Нижняя сторона поверхности делается видимой, если модифицировать этот алгоритм, включив в него нижний горизонт, который опускается вниз по ходу работы алгоритма. Это реализуется при помощи второго массива, длина которого равна числу различимых точек по оси x в пространстве изображения. Этот массив содержит наименьшее значение y для каждого значения x. Алгоритм становится таким: если на текущей плоскости при некотором заданном значении x соответствующее значение y на кривой больше максимального или меньше минимального по y для всех предыдущих кривых при этом x, то текущая кривая видима; в противном случае она невидима. Алгоритм плавающего горизонта чаше всего используется для удаления невидимых линий трехмерного представления функций, описывающих поверхность в виде F(x, у, z) = 0. Идея метода заключается в сведении трехмерной задачи к двумерной путем пересечения исходной поверхности последовательностью параллельных секущих плоскостей, имеющих постоянные значения координаты z. Алгоритм сначала упорядочивает плоскости z = const по возрастанию расстояния до них от точки наблюдения. Затем для каждой плоскости, начиная с ближайшей к точке наблюдения, строится кривая, лежащая на ней, т.е. для каждого значения координаты х в пространстве изображения определяется соответствующее значение y. Если на текущей плоскости при некотором заданном значении x соответствующее значение у на кривой больше значения y для всех предыдущих кривых при этом значении x, то текущая кривая видима в этой точке; в противном случае она невидима. 15. Создание реалистических изображений: алгоритм Вейлера-Азертона для удаления невидимых линий и поверхностей. Поскольку выходом являются многоугольники, то алгоритм можно легко использовать для удаления как невидимых линий, так и невидимых поверхностей. Алгоритм удаления невидимых поверхностей состоит из четырех шагов. 1. Предварительная сортировка по глубине. 2. Отсечение по границе ближайшего к наблюдателю многоугольника, называемое сортировкой многоугольников на плоскости. 3. Удаление многоугольников, экранированных многоугольником, ближайшим к точке наблюдения. 4. Если требуется, то рекурсивное подразбиение и окончательная сортировка для устранения всех неопределенностей. Предварительная сортировка по глубине нужна для формирования списка приблизительных приоритетов. Предположим, что точка наблюдения расположена в бесконечности на положительной полуоси z, тогда ближайшим к ней и первым в списке будет тот многоугольник, который обладает вершиной с максимальной координатой z. В качестве отсекающего многоугольника используется копия первого многоугольника из предварительного списка приоритетов по глубине. Отсекаться будут остающиеся в этом списке многоугольники, включая и первый многоугольник. Вводятся два списка: внутренний и внешний. С помощью алгоритма отсечения Вейлера-Азертона все многоугольники отсекаются по границам отсекающего многоугольника. Фактически это двумерная операция отсечения проекций отсекающего и отсекаемого многоугольников. Та часть каждого отсекаемого многоугольника, которая оказывается внутри отсекающего, если она имеется, попадает во внутренний список. Оставшаяся часть, если таковая есть, попадает во внешний список. Этот этап алгоритма является сортировкой на плоскости или или xy-сортировкой. После этого сравниваются глубины каждого многоугольника из внутреннего списка с глубиной отсекающего многоугольника. С использованием координат (х, y) вершин отсекаемых многоугольников и уравнений несущих плоскостей вычисляются глубины (координаты z) каждой вершины. Затем они сравниваются с минимальной координатой z (zc min) для отсекающего многоугольника. Если глубина ни одной из этих вершин не будет больше zc min, то все многоугольники из внутреннего списка экранируются отсекающим многоугольником. Эти многоугольники удаляются, и изображается внутренний список. Заметим, что во внутреннем списке остался лишь отсекающий многоугольник. Работа алгоритма затем продолжается с внешним списком. Если координата z какого-либо многоугольника из внутреннего списка окажется больше, чем zc min, то такой многоугольник по крайней мере частично экранирует отсекающий многоугольник. В подобном случае результат предварительной сортировки по глубине ошибочен. Поэтому алгоритм рекурсивно подразделяет плоскость (х, y), используя многоугольник, нарушивший порядок, в качестве нового отсекающего многоугольника. Отсечению подлежат многоугольники из внутреннего списка, причем старый отсекающий многоугольник теперь сам будет подвергнут отсечению новым отсекающим многоугольником. Подчеркнем, что новый отсекающий многоугольник является копией исходного многоугольника, а не его остатка после первого отсечения. Использование копии неотсеченного многоугольника позволяет минимизировать число разбиений. 16. Создание реалистических изображений: алгоритм использующий Z-буфер для удаления невидимых линий и поверхностей. Это один из простейших алгоритмов удаления невидимых поверхностей. Работает этот алгоритм в пространстве изображения. Идея z-буфера является простым обобщением идеи о буфере кадра. Буфер кадра используется для запоминания интенсивности каждого пиксела в пространстве изображения. Z-буфер - это отдельный буфер глубины, используемый для запоминания координаты z или глубины каждого видимого пиксела в пространстве изображения. В процессе работы глубина или значение z каждого нового пиксела, который нужно занести в буфер кадра, сравнивается с глубиной того пиксела, который уже занесен в z-буфер. Если это сравнение показывает, что новый пиксел расположен впереди пиксела, находящегося в буфере кадра, то новый пиксел заносится в этот буфер и, кроме того, производится корректировка z-буфера новым значением z. Если же сравнение дает противоположный результат, то никаких действий не производится. По сути, алгоритм является поиском по х и y наибольшего значения функции z(х, y). Главное преимущество алгоритма - его простота. Кроме того, этот алгоритм решает задачу об удалении невидимых поверхностей и делает тривиальной визуализацию пересечений сложных повурхностей. Сцены могут быть любой сложности. Поскольку габариты пространства изображения фиксированы, оценка вычислительной трудоемкости алгоритма не более чем линейна. Поскольку элементы сцены или картинки можно заносить в буфер кадра или и z-буфер в произвольном порядке, их не нужно предварительно сортировать по приоритету глубины. Поэтому экономится вычислительное время, затрачиваемое на сортировку по глубине. Основной недостаток алгоритма - большой объем требуемой памяти. Если сцена подвергается видовому преобразованию и отсекается до фиксированного диапазона координат z значений, то можно использовать z-буфер с фиксированной точностью. Информацию о глубине нужно обрабатывать с большей точностью, чем координатную информацию на плоскости (х, у); обычно бывает достаточно 20 бит. Буфер кадра размером 512х512х24 бит в комбинации с z-буфером размером 512х512х20 бит требует почти 1.5 мегабайт памяти. Однако снижение цен на память делает экономически оправданным создание специализированных запоминающих устройств для z-буфера и связанной с ним аппаратуры. Другой недостаток алгоритма z-буфера состоит в трудоемкости и высокой стоимости устранения лестничного эффекта, а также реализации эффектов прозрачности и просвечивания. Поскольку алгоритм заносит пикселы в буфер кадра в произвольном порядке, то нелегко получить информацию, необходимую для методов устранения лестничного эффекта, основывающихся на предварительной фильтрации. При реализации эффектов прозрачности и просвечивания, пикселы могут заноситься в буфер кадра в некорректном порядке, что ведет к локальным ошибкам. .
17. Создание реалистических изображений: алгоритм Ньюэла- Ньюэла-Санча для удаления невидимых линий и поверхностей. Это представитель класса алгоритмов основанных на точной сортировке по глубине. Если удается получить точно отсортированный список, то никакие два объекта не будут взаимно перекрывать друг друга.
· Сформировать предварительный список приоритетов по глубине, используя в качестве ключа сортировки значение zmin для каждого многоугольника. Первым в списке будет многоугольник с минимальным значением zmin. Этот многоугольник лежит дальше всех от точки наблюдения, расположенной в бесконечности на положительной полуоси z. Обозначим его через Р, а следующий в списке многоугольник - через Q. · Для каждого многоугольника Р из списка надо проверить его отношение с Q: 1. если ближайшая вершина Р (Рzmax) будет дальше от точки наблюдения, чем самая удаленная вершина Q (Qzmin), т.е. Qzmin > = Рzmax и никакая часть Р не может экранировать Q. Занести Р в буфер кадра (рис.1, а); 2. если Qzmin < Рzmax потенциально P экранирует не только Q, но также и любой другой многоугольник типа Q из списка, для которого Qzmin < Рzmax. Тем самым образуется множество [Q]. Однако Р может фактически и не экранировать ни один из этих многоугольников. Если последнее верно, то Р можно заносить в буфер кадра. Для ответа на этот вопрос используется серия тестов, следующих по возрастанию их вычислительной сложности. Эти тесты ниже формулируются в виде вопросов. Если ответ на любой вопрос будет положительным, то Р не может экранировать {Q}. Поэтому Р сразу же заносится в буфер кадра. Вот эти тесты: a. Верно ли, что прямоугольные объемлющие оболочки Р и Q не перекрываются по х? b. Верно ли, что прямоугольные оболочки Р и Q не перекрываются по у? c. Верно ли, что Р целиком лежит по ту сторону плоскости, несущей Q, которая расположена дальше от точки наблюдения (рис.3, а)? d. Верно ли, что Q целиком лежит по ту сторону плоскости, несущей P, которая ближе к точке наблюдения (рис. 3, b)? e. Верно ли, что проекции Р и Q не перекрываются? 18. Создание реалистических изображений: удаление невидимых линий методом трассировки лучей. . Главная идея, лежащая в основе этого метода, заключается в том, что наблюдатель видит любой объект посредством испускаемого неким источником света, который падает на этот объект и затем каким-то путем доходит до наблюдателя. Свет может достичь наблюдателя, отразившись от поверхности, преломившись или пройдя через нееЭтот алгоритм может учитывать эффекты отражения одного объекта от поверхности другого, преломления, прозрачности и затенения, а также устранение ступенчатости. Наиболее важным элементом алгоритма определения видимых поверхностей путем трассировки лучей, является процедура определения пересечений. В состав сцены можно включать любой объект, для которого можно создать процедуру построения пересечений. Объекты сцены могут состоять из набора плоских многоугольников, многогранников или тел, ограниченных или определяемых квадратичными или биполиномиальными параметрическими поверхностями. Чтобы избавиться от ненужного поиска пересечений, производится проверка пересечения луча с объемной оболочкой рассматриваемого объекта. И если луч не пересекает оболочки, то не нужно больше искать пересечений этого объекта с лучом. В качестве оболочки можно использовать прямоугольный параллелепипед или сферу, рис. 5. Факт пересечения трехмерного луча со сферой определяется очень просто. В частности, если расстояние от центра сферической оболочки до луча превосходит радиус этой сферы, то луч не пересекает оболочки. Следовательно, он не может пересечься и с объектом.
Если же луч пересекается со сферической оболочкой какого-нибудь подэлемента, то последний разбивается дальше. Если трассируемый луч пересекает объекты сцены в нескольких точках, то необходимо определить видимое пересечение. Для алгоритмов определения видимости простых непрозрачных поверхностей, которые обсуждаются в данном разделе, пересечением с видимой поверхностью будет точка с максимальным значением координаты z. Для более сложных алгоритмов, учитывающих отражения и преломления, эти пересечения следует упорядочить вдоль луча по расстоянию от его начала.
|