Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ионная полимеризация мономеров. Катализаторы катионной и анионной полимеризации. Сополимеризация мономеров.
Ионная полимеризация сопровождается координацией мономера на поверхности катализатора и отличается от радикальной реакции тем, что: · растущие частицы (ионы) более активны, чем свободные радикалы; · инициаторы каталитические (восстанавливают структуру, а не расходуются необратимо) и позволяют получать стереорегулярные полимеры; · суммарная энергия активации меньше по сравнению с радикальной, и это позволяет снизить температуру реакции вплоть до отрицательных температур; · среда - не вода, а растворитель с сольватирующим действием на ионы; · большие значения ММ и узкое ММР полимера, высокая степень химической регулярности макромолекул при полном отсутствии разветвлений. Она уступает радикальной полимеризации по сложности технологического оформления процесса и по масштабам применения при производстве большинства промышленных полимеров. Катализаторами катионной полимеризации являются доноры протона – сильные протонные кислоты (H 2 SO 4) и кислоты Льюиса (AlCl 3, BF 3, TiCl 4). Последние образуют с сокатализатором (Н 2 О, HCl) комплексные соединения, которые на стадии инициирования создают с мономером ионную пару: СН2 = С(СН 3) 2+ Н + [ВF 3. ОН] - → (СН 3) 3 С + [ВF 3. ОН] -. Низкая энергия активации (до 65 кДж/моль) обеспечивает высокую скорость процесса, увеличивающуюся со снижением температуры (температурный коэффициент отрицателен). Например, под действием BF 3 изобутилен полимеризуется за несколько секунд при -100оС до полимера большой ММ. В процессе роста цепи ионная пара реагирует со следующей молекулой мономера, а на конце цепи сохраняется карбкатион с противоанионом: (СН3)3С+[ВF3.ОН] - +СН2=С(СН3)2→ (СН3)3СН2(СН3)2С+[ВF3.ОН] - и т. д. Поляризация молекулы мономера обеспечивает регулярное присоединение звеньев («голова к хвосту»), а обрыв цепи невозможен рекомбинацией одноименно заряженных ионов. Поэтому ионная пара при уменьшении кинетической подвижности макроиона (с ростом его размеров) перестраивается в макромолекулу с двойной связью или образует гидроксильную группу и регенерирует комплекс катализатор-сокатализатор или катализатор: ; . Катализатор многократно инициирует рост цепи, поэтому при синтезе эффективны даже малые его количества. Энергия активации реакции обрыва цепи через разрыв σ -связи больше, а энергия активации реакции роста цепи, которая определяет весь процесс синтеза и связана с атакой двойной связи мономера ионом карбония, - меньше, чем при свободнорадикальной полимеризации. Поэтому повышение температуры и ведет к снижению скорости реакции синтеза и средней молекулярной массы полимера. Катализаторами анионной полимеризации являются щелочные металлы, их амиды, алкилы или комплексы с ароматическими углеводородами. Полимеризацию с амидом щелочного металла проводят в среде жидкого аммиака, выполняющего роль растворителя и передатчика реакционной цепи:
Обрыв цепи происходит путем ее передачи на растворитель: Регенерированный катализатор начинает новую цепь, и реакция идет до конца при регулярном присоединении мономера «голова к хвосту». Полимеризация мономеров щелочным металлом проходит через образование ион-радикала и затем бианиона, по обоим концам которого и присоединяются последующие молекулы до образования макромолекулы: ; ; . Регулирование молекулярной массы полимера улучшается каталитическим комплексом щелочного металла с нафталином в среде полярного растворителя тетрагидрофурана (полимеризация с переносом электрона). Образующийся комплекс передает свой электрон мономеру, а нафталин регенерируется: ; . В присутствии металлического натрия вновь образуется комплекс, повторяются акты инициирования и роста цепи. При отсутствии примесей обеспечивается рост цепи без обрыва до полного исчерпания мономера с образованием «живых» полимеров, состоящих из заряженных отрицательно макроионов. При добавлении того же мономера продолжается рост цепи, а порции другого мономера - образуется блок-сополимер. Алкилы щелочного металла отличаются от других систем высокой способностью координировать молекулу мономера, поэтому полимеризацию изопрена с н -бутиллитием называют анионно-координационной: Молекула изопрена внедряется в поле двух центров катализатора - между отрицательно заряженным алкильным остатком и положительно заряженным ионом лития (двухцентровый механизм), принимая цис -конфигурацию, которая и сохраняется при последующих актах роста цепи. Так получают синтетический аналог НК, а процесс такого синтеза в среде неполярных или малополярных растворителей, когда полярность растворителя меньше полярности мономера, является оптимальным. Так же получают полимеры с концевыми функциональными группами – карбоксильными (+СО 2) или гидроксильными (+оксид этилена) и звездообразной структуры (в CCl 4). Ионно-координационная полимеризация виниловых мономеров обладает высоким координирующим действием, специфичным для каждого из катализаторов Циглера-Натта, но наиболее востребованы комплексы хлоридов титана с алкилпроизводными алюминия. Они образуют четырехчленный комплекс, который координирует молекулу этилена или его производного у атома титана с образованием π -комплекса и поляризует ее: , . После разделения зарядов одна из связей в комплексе разрушается, и в его структуру входит молекула мономера, образуя новый шестичленный цикл. При последующей его перестройке в новом четырехчленном цикле остается один из атомов углерода молекулы мономера и выделяется исходная этильная группа вместе с другим атомом углерода молекулы мономера: . Таким образом, разрыв π -связи в молекуле мономера приводит к образованию σ -связи молекулы мономера с атомом углерода этильной группы и возникновению новой структуры исходного комплекса, в которой с атомами титана и алюминия соединен уже углерод молекулы мономера. Следующая молекула мономера реагирует так же, вытесняя образующуюся полимерную молекулу из структуры катализатора и сохраняя свое строго определенное пространственное расположение относительно плоскости цепи: . Мономер присоединяется только по типу «голова к хвосту», в макромолекулах отсутствуют разветвления и возможны два вида стереорегулярных структур: изотактическая и синдиотактическая. При полимеризации диеновых мономеров образуется π -аллильный комплекс мономера с переходным металлом, который также работает по принципу вытеснения предыдущего мономерного звена последующим. Цепь обрывается путем отщепления растущей макромолекулы от каталитического комплекса и передачи цепи на мономер или при реакции с молекулой триалкилалюминия, не связанного с TiCl 3: . Каталитические системы обеспечивают формирование регулярных полимеров, а наиболее важна цис- 1, 4-структура (табл.1.6), придающая полимеру высоко-эластические свойства в широком интервале температур. Структура транс -1, 4-полидиенов придает им свойства пластмасс - синтетических заменителей гуттаперчи. Структуры типа 1, 2 и 3, 4 изо- и синдиотактических полидиенов по свойствам близки к структурам виниловых стереорегулярных полимеров. В отличие от атактических, стереорегулярные полимеры с комплексными катализаторами при регулярно чередующихся звеньях имеют правильное пространственное расположение заместителей вдоль цепи. Таблица 1.6. Типы структур полибутадиена и полиизопрена,
|