Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задания. 1.1. Пароход идет по реке от пункта А до пункта В со скоростью 10 км/ч, а обратно – со скоростью 16 км/ч






1.1. Пароход идет по реке от пункта А до пункта В со скоростью 10 км/ч, а обратно – со скоростью 16 км/ч. Найдите: 1) среднюю скорость парохода, 2) скорость течения реки. [12, 3 км/ч; 0, 83 м/с].

1.2. Скорость течения реки 3 км/ч, а скорость движения лодки относительно воды 6 км/ч. Опреде­лите, под каким углом относительно берега должна дви­гаться лодка, чтобы проплыть поперек реки. [60°].

1.3. Велосипедист проехал первую половину времени своего движения со скоростью 16 км/ч, вторую половину времени — со скоростью 12 км/ч. Определите среднюю скорость движения велосипедиста. [14 км/ч].

1.4. Велосипедист проехал первую половину пути со скоростью 16 км/ч, вторую половину пути – со ско­ростью 12 км/ч. Определите среднюю скорость дви­жения велосипедиста. [13, 7 км/ч].

1.5. Студент проехал половину пути на велосипеде со скоростью 16 км/ч. Далее в течение половины остав­шегося времени он ехал со скоростью 12 км/ч, а затем до конца пути шел пешком со скоростью 5 км/ч. Определите среднюю скорость движения студента на всем пути. [11, 1 км/ч].

1.6. После удара клюшкой шайба скользит по льду с постоянным ускорением. В конце пятой секунды после начала движения ее скорость была равна 1, 5 м/с, а в конце шестой секунды шайба остановилась. С каким ускорением двигалась шайба, какой путь прошла и какова была ее скорость на расстоянии 20 м от начала движения? [1, 5 м/c2; 27 м; 4, 6 м/с].

1.7. Тело, брошенное вертикально вверх, через 3 с после начала движения имело скорость 7 м/с. На какую максимальную высоту относительно места броска поднялось тело? Считать . Сопротивлением воздуха пренебречь. [67, 6 м].

1.8. Тело падает вертикально с высоты 19, 6 м с нулевой начальной скоростью. Какой путь пройдет тело: 1) за первую 0, 1 с своего движения, 2) за последнюю 0, 1 с своего движения? Считать . Сопротивлением воздуха пренебречь. [0, 049 м; 1, 9 м].

1.9. Тело падает вертикально с высоты 19, 6 м с нулевой начальной скоростью. За какое время тело пройдет: 1) первый метр своего пути, 2) последний метр своего пути? Считать . Сопротивлением воздуха пренебречь. [0, 4 с; 0, 05 с].

1.10. С башни в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Пре­небрегая сопротивлением воздуха, определите для мо­мента времени = 2 с после начала движения: 1) ско­рость тела; 2) радиус кривизны траектории. Считать . [22 м/с; 109 м].

1.11. Камень брошен горизонтально со скоростью 5м/с. Определите нормальное и тангенциальное ускорения камня через 1 с после начала движения. Считать . Сопротивлением воздуха пренебречь. [4, 45 м/с2; 8, 73 м/с2].

1.12. Камень брошен горизонтально со скоростью 10 м/с. Найдите радиус кривизны траектории камня через 3 с после начала движения. Считать . Сопротивление воздуха не учитывать. [305 м].

1.13. Материальная точка начинает двигаться по ок­ружности радиусом = 2, 5 см с постоянным тангенциальным ускорением =0, 5 см/с2. Определите: 1) момент времени, при котором вектор ускорения образует с вектором скорости угол 45°; 2) путь, пройденный за это время движущейся точкой. [1) с; 2) 1, 25 см]

1.14. Линейная скорость точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость точки, находящейся на 6 см ближе к его оси. Определите радиус диска. [9 см].

1.15. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определите радиус колеса, если через 1 с после начала движения полное ускорение колеса 7, 5 м/с2. [79 см].

1.16. Два автомобиля, выехав одновременно из одного пункта, движутся прямолинейно в одном направлении. Зависимость пройденного ими пути задается уравнения­ми и . Определите закон изменения относительной скорости автомобилей.

1.17. Кинематические уравнения движения двух материальных точек имеют вид и , где , , . Определите: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорения и для этого момента. [1) 0; 2) – 4 м/с2; 2 м/с2].

1.18. Диск вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением ( = 0, 3 м/с2, = 0, 1 м/с3). Определите радиус, если к концу 2-й секунды движения вектор полного ускорения образует с вектором скорости угол = 86°. [0, 1 м].

1.19. Нормальное ускорение точки, движущейся по окружности радиусом , задается уравнением , где =4 м/с4. Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время =5 с после начала движения; 3) полное ускорение для момента времени = 1 с. [1)4 м/с2; 2)50 м; 3) м/с2].

1.20. Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 4 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [24 м; 38 м/с; 42 м/с2].

1.21. Зависимость пройденного телом пути от времени задаётся уравнением , где =5м, =4м/с, =1м/с2. Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [2м; 2м/с; 2 м/с2].

1.22. Зависимость пройденного телом пути от времени задаётся уравнением , где =0, 1м, =0, 1м/с, =0, 14м/с2, =0, 01м/с3. 1. Через сколько времени после начала движения ускорение тела будет равно 1м/с2? 2. Чему равно среднее ускорение тела за этот промежуток времени? [1) через 12с; 2) 0, 64 м/с2].

1.23. Зависимость пройденного телом пути от времени задаётся уравнением , где =6м, =3м/с, =2м/с2. Найдите среднюю скорость и среднее ускорение в интервале времени от 1с до 4с. [ =7м/с; =4м/с2].

1.24. Зависимость пройденного телом пути по окружности радиусом задается уравнением ( = 0, 4 м/с2, = 0, 1 м/с). Для момента времени после начала движения определите нормальное, тангенциальное и полное ускорения. [0, 27 м/с2; 0, 8 м/с2; 0, 84 м/с2].

1.25. Радиус-вектор материальной точки изменяется со временем по закону , где - орты осей и . Определите для момента времени = 1 с модуль скорости и модуль ускорения. [6, 7 м/с; 8, 48 м/с2].

1.26. Радиус-вектор материальной точки изменяется со временем по закону . Запишите зависимости скорости и ускорения от времени. Определите модуль скорости в момент времени = 2 с. [16, 3 м/с].

1.27. Диск радиусом 10 см вращается вокруг не­подвижной оси так, что зависимость угла поворота ради­уса диска от времени задается уравнением ( =1 рад/с, =1 рад/с2, = 1 рад/с3). Определите для точек на ободе диска к концу второй се­кунды после начала движения тангенциальное, нормальное и полное ускоре­ния. [1, 4 м/с2; 28, 9 м/с2; 28, 9 м/с2].

1.28. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0, 5 рад/с2). Определите к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное, нормальное и полное ускорения. [1) 2 рад/с; 2) 1 рад/с2; 3) 0, 8 м/с2; 3, 2 м/с2; 3, 3 м/с2].

1.29. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0, 1рад/с2). Определите полное ускорение точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки 0, 4 м/с. [0, 25 м/с2].

1.30. Диск радиусом 0, 2 м вращается вокруг неподвижной оси так, что зависимость угловой скорос­ти от времени задается уравнением , где . Определите для точек на ободе диска к концу первой секунды после начала движения полное ускорение и число оборотов, сделанных диском за первую минуту движения. [5, 8 м/c2; 15, 9].

1.31. Диск радиусом 10 см вращается так, что зависимость угла поворота радиуса диска от времени задается уравнением ( = 2 рад, = 4 рад/с3). Определите для точек на ободе колеса: 1) нормальное ус­корение в момент времени 2 с; 2) тангенциальное ускорение для этого же момента; 3) угол поворота, при котором полное ускорение составляет с радиусом колеса 45°. [1) 230 м/с2; 2) 4, 8 м/с2; 3) 2, 67 рад].

1.32. Якорь электродвигателя, имеющий частоту вращения 50 с-1, после выключения тока, сделав 628 оборотов, остановился. Определите угловое ускорение якоря. [12, 5 рад/с2].

1.33. Колесо автомобиля вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0, 157 рад/с2; 2) 300].

1.34. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса. [3, 2 рад/с2].

1.35. Колесо спустя 1 мин после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных колесом за эту минуту. Движение считать равноускоренным. [1, 26 рад/с2; 360].

1.36. Колесо, вращаясь равнозамедленно, при торможении уменьшило частоту вращения за 1 мин с 300 до 180 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных за это время. [ 0, 21 рад/с2; 240].


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал