яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






зАВИСИМОСТЬ ИОННЫХ ТОКОВ оТ МЕМБРАННОГО ПОТЕНЦИАЛА






Установив природу раннего и позднего компонента тока, Ходжкин и Хаксли исследовали зависимость натриевого и калиевого токов от мембранного потенциала. Токи, вызванные различными уровнями деполяризации от потенциала покоя -65 мВ, показаны на рис. 6.5А. Скачок потенциала на -85 мВ (нижняя кривая на рис. 6.5А) приводит лишь к возникновению небольшого входящего тока, как и следовало ожидать на основании свойств мембраны в состоянии покоя. Как уже было показано на рис. 6.3, каждый из небольших деполяризационных скачков производит сначала входящий ток, а затем более продолжительный выходящий. С увеличением величины деполяризационных скачков ранний ток уменьшается, при деполяризации на +52 мВ он равен нулю, а при еще более положительных значениях деполяризации меняет знак и становится выходящим.

Потенциалзависимость ранней и поздней составляющих тока показана на рис. 6.5В. Максимальная амплитуда раннего тока и амплитуда уровня плато позднего тока расположены по оси ординат, а потенциал фиксации, который устанавливался скачком с уровня потенциала покоя — по оси абсцисс. При гиперполяризующих скачках нет разделения на ранние и поздние токи; мембрана отвечает на скачок потенциала как простой резистор. Поздний ток также ведет себя как резистор, поскольку деполяризация активирует выходящий ток, однако по мере увеличения уровня деполяризации величина тока начинает значительно превосходить величину, ожидаемую на основании свойств мембраны в покое. Это объясняется активацией потенциалзависимой калиевой проводимости, пропускающей дополнительный ток. Поведение раннего тока значительно более сложно. Как уже было отмечено, он сначала возрастает, а затем убывает по мере увеличения деполяризации, становится равным нулю при потенциале +53 мВ, а затем и вовсе меняет знак. Потенциал реверсии расположен близко к равновесному потенциалу для натрия, чего и следовало ожидать для тока ионов натрия.

Интересной особенностью потенциалзависимости раннего тока является то, что в диапазоне потенциалов от — 50 до +10 мВ ток растет с ростом деполяризации. Величина натриевого тока зависит от натриевой проводимости (gNa), а также от движущей силы для ионов натрия (Vm — Е ). Можно было бы предположить, что благодаря этому ток будет уменьшаться по мере приближения мембранного потенциала к натриевому равновесному потенциалу, т. е. произойдет уменьшение движущей силы. Однако этого не происходит по причине резкого увеличения натриевой проводимости с возрастанием деполяризации (см. рис. 6.7), которое перевешивает эффект снижения движущей силы. Таким образом, натриевый ток I Na = g Na(Km - ENa) возрастает. Этот участок потенциалзависимости раннего тока называется «участком проводимости с отрицательным углом наклона».


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2024 ЦНД. (0.006 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК