цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ йюрецнпхх: юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ |
нЕРВНЫЕ МЕХАНИЗМЫ НАВИГАЦИИ
Одним из важных результатов подобных исследований является получение детальной информации об исходных сенсорных механизмах ориентирования. Поскольку каждая омматидия дорзального ободка содержит два набора фоторецепторов, способных воспринимать плоскость поляризации света, расположенных под определенным углом друг к другу, и поскольку каждая омматидия воспринимает небо под несколько различным углом, набор из множества омматидии обеспечивает мозг информацией о пространственном распределении векторов поляризованного света. Более того, можно рассчитать, каким образом будет реагировать эта система на разного рода нетипичные помехи. При изучении поведения использовались различные объекты, которые помещались на пути движения насекомого, вынуждая его отклоняться от первоначального пути и затем корректировать это отклонение. Другого рода помехой может быть перемещение муравьев в разное время суток, а также разного рода изменения поляризованного света, воспринимаемого ими. Одновременно с этим, точные электрофизиологические эксперименты для выявления интегративных механизмов в нейронах мозга муравья пока не могут быть выполнены по техническим причинам. Поэтому связь между входной сенсорной информацией и моторными командами у муравья остается пока неясной. Тем не менее, используя вычислительный подход на основе известных свойств нейронов, могут быть созданы модели и даже роботы, способные точно копировать ориентирование пустынного муравья при помощи поляризованного света (рис. 15.17). Глава 15. Клеточные механизмы интеграции и поведения 335
Так как нейроны муравья очень малы, электрические сигналы были отведены Лабхартом с коллегами от интернейронов сверчка, получающих сигналы от фоторецепторов поляризованного света80). Как и у муравьев и ракообразных, микроворсинки двух фоторецепторов сверчка расположены ортогонально: их отростки направляются к интернейрону с информацией о векторе поляризации света. Электрические сигналы этих клеток показаны на рис. 15.18. Эти сигналы в точности копируют сигналы, предсказанные на основе поведенческих экспериментов с поляризованным светом. Поляризованный свет и «скрученные» фоторецепторы пчел (twisted photoreceptors) Рецепторы поляризованного света есть и у пчел. С одной стороны, упорядоченное расположение микроворсинок позволяет пчеле ориентироваться по поляризованному свету. Но при различении цветов поляризация может вызывать определенные сложности. Во время полета пчеле нужно хорошо различать цветы по окраске их лепестков. Листья и лепестки, однако, сильно различаются по своей способности отражать свет, что определяется свойствами их поверхностей, в зависимости от содержания восковидных веществ. Гладкие и лоснящиеся листья отражают поляризованный свет лучше, чем матовые. Следовательно, угол, под которым лист или лепесток рассматриваются и под которым на них падает свет, будет влиять на величину и направление отраженного поляризованного света. Зрительные пигменты, необходимые для цветового зрения, располагаются у пчелы (как и у муравья) в микроворсинках специфических рецепторных клеток трех типов, чувствительных к зеленому, синему и ультрафиолетовому спектрам. У пчелы, как и у муравья, зрительные пигменты находятся в стереотипных параллельно расположенных рабдомах. Из-за переменных неучтенных составляющих поляризованного света, сигналы цветовосприятия становятся неоднозначными, так как точность различения цвета зависит не только от длины волны, но и от относительного поглощения света разными классами цветовых фоторецепторов. Как писали Венер и Бернард81): «Это означало бы, что для пчелы цветовые оттенки любой части растения меняются, если приближающаяся пчела вдруг меняет направление своего полета и, следовательно, направление обзора, — эффект совсем нежеланный. Например, зигзагообразно кружа над опушкой, где имеется 336 Раздел III. Интегративные механизмы
множество поверхностей листьев с разной степенью наклона, пчела видела бы удивительно пестрый фейерверк ложных цветов, делающий исключительно трудным, если вообще возможным, процесс определения истинных цветов растений». Чтобы избежать этой проблемы (которая, конечно, не может касаться нас, так как мы не способны воспринимать ориентацию поляризованного света), в сетчатке пчелы расположены «скрученные» рецепторные клетки. При помощи световой и электронной микроскопии было обнаружено, что фоторецепторы скручены вокруг своих продольных осей, что приводит к последовательному смещению в ориентации микроворсинок (рис. 15.19). Виток, величина которого составляет порядка 1°/мкм, приводит к тому, что микроворсинки более не находятся строго параллельно друг другу по всей глубине сетчатки. Поэтому фоторецепторы больше не воспринимают только поляризованный свет определенной ориентации. В течение многих лет изогнутая форма фоторецепторов казалась анатомической особенностью, не имеюшей какого-либо значения. Глаз пчелы, как и муравья, содержит обычные «нескрученные» рецепторы в зоне дорзального ободка. Они реагируют на плоскополяризованный свет и, значит, могут быть использованы для навигации и ориентирования. Как говорил Лэнд: «Нельзя не поразиться простоте и многосторонности инженерных решений природы в оптике» 82). Глава 15. Клеточные механизмы интеграции и поведения 337
|