Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Понятие о поверхностном натяжении жидкостей
Молекулы жидкости, расположенные у ее границы, находятся в совершенно иных условиях, чем молекулы внутри жидкости. Молекула внутри жидкости находится под воздействием всех остальных молекул. Однако силы взаимодействия между молекулами быстро убывают с расстоянием. Поэтому практически достаточно лишь учесть действие молекул, расположенных довольно близко к рассматриваемой молекуле. Расстояние r, на котором проявляются силы взаимодействия между молекулами, называют радиусом молекулярного действия, а сферу радиуса r – сферой молекулярного действия. Внутри жидкости в сферу молекулярного действия молекулы А (рис. 5) попадает большое число других молекул. Силы, с которыми эти молекулы действуют на молекулу А направлены во все стороны равномерно и взаимно компенсируются так, что результирующая сила, действующая на молекулу А, равна нулю. Иначе обстоит дело с молекулами вблизи поверхности жидкости. Сфера молекулярного действия молекулы В (см. рис.5) лишь частично находится внутри жидкости. Обычно над поверхностью жидкости находится газ (или пары жидкости). Концентрация молекул в газе настолько мала, что действием молекул газа на молекулу В можно пренебречь и принимать во внимание только силы, действующие со стороны молекул жидкости, входящих в сферу молекулярного действия. Таким образом, на молекулу В с разных сторон действуют неодинаковые сады и возникает результирующая сила, направленная внутрь жидкости. Однако существенны и другие составляющие сил взаимодействия между молекулами, расположенными на поверхностном слое жидкости. Если силы, действующие на молекулу поверхностного слоя жидкости, сгруппировать по квадратам (рис.6), то эти силы дадут составляющие как в вертикальной, так и в горизонтальной плоскостях. Силы в вертикальных плоскостях – это рассмотренные силы, стремящиеся втянуть молекулы внутрь жидкости. Силы в горизонтальной плоскости (называемые силами поверхностного натяжения) вызывают стремление жидкости сократить свою поверхность. Мысленно рассечем поверхность жидкости линией АВ. К этому отрезку (вернее, к молекулам) приложены силы, лежащие в плоскости поверхности и перпендикулярные к элементам отрезка (на рис.7 указаны векторами), равнодействующая сил, направленных в одну сторону от отрезка, тем больше, чем больше длина отрезка АВ, т.е. (9)
Коэффициент пропорциональности называется коэффициентом поверхностного натяжения. Он выражает силу, приложенную к единице длины поверхностного слоя жидкости. Для данной жидкости коэффициент поверхностного натяжения зависит от температуры (убывает с ее ростом). При приближении температуры жидкости к критической стремится к нулю. Определим работу, которую необходимо затратить, чтобы увеличить площадь поверхности жидкости на некоторую величину (рис.8). Для этого с помощью силы F передвинем границу пленки на отрезок параллельно самой себе. Совершенная работа равна (10) Энергия Е представляет собой ту часть внутренней энергии пленки, которая может быть превращена в работу при ее изотермическом растяжении. В термодинамике эта энергия называется свободной энергией. Отсюда следует иное определение коэффициента поверхностного натяжения. Он численно равен изменению свободной энергии поверхности жидкости при изменении ее площади на единицу.
|