Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Оценка отклонения теоретического и эмпирического распределений от нормального. Асимметрия и эксцесс






 

Теоретическим называют распределение вероятностей. Теоретические распределения изучает теория вероятностей.

Эмпирическим называют распределение относительных частот. Эмпирические распределения изучает математическая статистика.

При изучении распределений, отличных от нормального, возникает необходимость количественно оценить это различие. С этой целью вводят специальные характеристики, в частности асимметрию и эксцесс. Для нормального распределения эти характеристики равны нулю. Поэтому если для изучаемого распределения асимметрия и эксцесс имеют небольшие значения, то можно предположить близость этого распределения к нормальному. Наоборот, большие значения асимметрии и эксцесса указывают на значительное отклонение от нормального.

Как оценить асимметрию? Можно доказать, что для симметричного распределения (график такого распределения симметричен относительно прямой ) каждый центральный момент нечётного порядка равен нулю. Для несимметричных распределений центральные моменты нечётного порядка отличны от нуля. Поэтому любой из этих моментов (кроме момента первого порядка, который равен нулю для любого распределения) может служить для оценки асимметрии; естественно выбирают простейший из них, т.е. момент третьего порядка . Однако принять этот момент для оценки асимметрии неудобно потому, что его величина зависит от единиц, в которых измеряется случайная величина. Чтобы устранить этот недостаток, делят на и таким образом получают безразмерную характеристику.

Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения и обозначается :

 

.

Асимметрия эмпирического распределения определяется равенством:

.

Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; отрицательна - «длинная часть» кривой распределения расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды. Если «длинная часть» кривой распределения расположена правее моды, то асимметрия положительна (рис.4), слева - отрицательна (рис.5).

Для оценки «крутости», т.е. большего или меньшего подъёма кривой теоретического распределения по сравнению с нормальной кривой, пользуются характеристикой – эксцессом.

Эксцессом теоретического распределения называют характеристику, которая определяется равенством

 

Эксцесс эмпирического распределения определяется равенством

 

 

Для нормального распределения ; следовательно, эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.

Заметим, что моменты удобно вычислять методом произведений:

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал