Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Определение численности выборки
Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (1.35) и затем (1.36) в формулу (1.38) и решая ее относительно численности выборки, получим следующие формулы для повторной выборки n = ; (1.41) для бесповторной выборки n = . (1.42) Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов: — берется из предыдущих выборочных наблюдений; — по правилу, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений (R/ = 6или R/ = 6; отсюда Д = R2 /36); — по правилу «трех сигм», согласно которому в средней величине укладывается примерно три стандартных отклонения ( / =3; отсюда = /3 или Д = 2/9). При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0, 5, что по формуле (1.37) соответствует выборочной дисперсии в размере Дв = 0, 5(1-0, 5) = 0, 25.
|