Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основы электродуговой сварки






Сварочная дуга. Источником тепла при дуговой сварке является сварочная дуга — устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, используемых при сварке, и характеризуемый высокой плотностью токов и высокой температурой.

Тепло, выделяемое в дуге, расходу­ется на нагрев газа, создание светового потока и непосредственно на сварку. Температура дуги—неравномерная, наиболее высокая в центре газового столба—около 6000° С (рис. 8.1).

Основной характеристикой сва­рочной дуги как источника энергии является эффективная тепловая мощность qэ — это количество теплоты, введенное в металл в процессе сварки в единицу времени и затраченное на его нагрев. Эффективная тепловая мощность является частью полной тепловой мощности дуги q, так как при любом виде сварки наблюдаются непроизводительные расходы теплоты дуги на излучение, теплоотвод в металл и пр. Отношение эффективной тепловой мощности к полной тепловой мощности называют эффективным коэффициентом полезного действия процесса нагрева:

η э = qэ-q

Для различных видов сварки зна­чение η э может меняться в довольно широких пределах от 0, 3 до 0, 95, на­пример, коэффициент полезного дей­ствии процесса нагрева открытой ду­ги, возбуждаемой угольным электро­дом— 0, 5 — 0, 65; сварка штучными электродами с покрытием — 0, 7 — 0, 85; дуга в аргоне — 0, 5 — 0, 6; свар­ка под флюсом — 0, 85 — 0, 93.

Количество теплоты, вводимое в металл в процессе горения дуги, отнесенное к единице длины шва получило название погонной энергии сварки. Погонная энергия равна отношению эффективной мощности дуги к скорости перемещения дуги υ св.

При восстановлении деталей используют три вида сварочных дуг (рис. 8, 2). Они отличаются количеством электродов и способом их включения и свариваемого металла в электрическую цепь, Когда дуга горит между электродом и изделием, ее называют дугой прямого действия. Когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь, ее называют дугой косвенного действия. Трехфазная дуга возбуждается между двумя электродами, а также между каждым электродом и основным металлом.

Рис. 8.1, Распределение температуры t в сварочной дуге

Рис. 8.2. Виды сварочных дуг:

а —- прямого действия; б — косвенного действия; в —комбинированного действия (трехфазная)

По роду тока различают электрические дуги, питаемые переменным и постоянным током. При использовании постоянного тока различают сварку на прямой и обратной полярности. При горении электрической дуги постоянного тока наибольшее количество тепла выделяется на положительном полюсе. Это объясняется тем, что поток электронов в дуге испускается отрицательным полюсом — катодом. Электроны как бы бомбардируют положительный полюс (анод), вследствие чего он разогревается сильнее, чем катод. При сварке для плавления свариваемого металла необходимо затратить больше тепла, чем для расплавления самого электрода. Поэтому обычно отрицательный полюс сварочной цепи присоединяют к электроду, а положительный – к свариваемому металлу. Такое присоединение называется прямой полярностью. Если же отрицательный полюс источника пи­тания присоединен к свариваемому металлу, а положительный — к электроду, то такая полярность называется обратной, Она применяется реже и только в тех случаях, когда необходимо получить меньший нагрев детали. Например, обратная полярность применяется при сварке тонколистовых изделий для предотвращения сквозного проплавления, сварке легированных сталей, которые очень чувствительны к перегреву и в прочих случаях. При питании дуги переменным током полярность тока многократно изменяется соответственно числу периодов, т. е. 50 раз в секунду. Поэтому в сварочной дуге переменного тока поток электронов также будет менять свое направление, бомбардируя попеременно то свариваемый металл, то конец электрода. В результате этого тепло между электродом и свари­ваемым металлом будет распределяться равномерно.

Более экономичны источники питания переменным током. Так, при ручной сварке на переменном токе расход электроэнергии составляет 3 — 4 кВт-ч на 1 кг наплавленного металла, а при сварке на постоянном токе 6 — 8 кВт-ч. Однако при постоянном токе электрическая дуга получается более стабильной и устойчивой.В зависимости от материала электрода различают дуги между неплавящимися электродами (угольными, вольфрамовыми) и плавящимися (металлическими)электродами.

Влияние кислорода, азота, водорода, серы и фосфора на свойства металла шва. При сварке плавлением происходит взаимодействие между жидким и твердым металлами, газами и жидким шлаком, образующимся при расплавлении шлакообразующих веществ, входящих в состав электродных покрытий или флюса.

Основными реакциями, происходящими в зоне сварки, являются реакции окисления и раскисления металла. Характерные условия металлургических реакций при сварке, как и при кристаллизации — высокая температура нагрева, относительно малый объем расплавленного метал­ла, кратковременность процесса.

Средняя температура капель электродного металла, поступающих в ванну, увеличивается с увеличением плотности тока и составляет при сварке 2200 — 2700° С, т. е. характеризуется значительным перегревом. Температура сварочной ванны при дуговой сварке также характеризу­ется значительным превышением над точкой плавления, перегрев составляет 100 — 500° С. Высокая температура способствует высокой скорости протекания реакций, однако из-за больших скоростей охлаждения реакции при сварке не успевают завершиться полностью.

Основными реакциями, происходящими в зоне сварки, являются реакции окисления и раскисления металла. Кислород в атомарном состоянии образует с железом закись (FеО), окись (Fе2О3), а также закись-окись (Fе3О4). В жидком металле растворяется только закись железа. Остальные окислы находятся в виде шлаковых включений и всплывают на поверхности сварочной ванны.

Кислород реагирует с металлом по реакции

mMe+n/2O2=MemOn

где т и п — численные коэффициенты форму­лы химических реакций; Ме — масса элемента металла; О2 — масса кислорода.

Химические реакции протекают до состояния равновесия между исход­ными веществами и продуктами ре­акции. О состоянии равновесия мож­но судить по константе равновесия &.

Из закона действующих масс изве­стно, что

K=MemO2n/2/(MemOn)

где МemО — соответственно содержание вмассе элемента Ме и кислорода в зоне реакции, %. Реакция окисления будет происхо­дить тем интенсивнее, чем больше произведение концентраций, вступа­ющих в реакцию веществ (в данной формуле значение числителя), по сравнению с равновесной. Если кон­станта будет меньше равновесной, идет реакция восстановления метал­ла из его окисла. Константа равнове­сия, выраженная через парциальное давление пара веществ, вступающих в реакцию,

Kp=pMe•pO2/(pMeOn)

где рМе — парциальное давление веществ, вступающих в реакцию.

Наиболее сильным раскислителем является кремний и марганец. При окислении они дают соответственно окись кремния SiO2 и закись марганца МnО. Активным раскислителем является углерод. При сварочных температурах углерод образует окись СО. Кислород попадает в металл шва в основном из воздуха при некачественной защите шва, из ржавчины и окалины при недостаточной зачистке свариваемой поверхно­сти или же из влаги при сварке сыры­ми электродами. Сильными раскислителями являются также титан, уг­лерод и алюминий.

Окружающий воздух является источником попадания в наплавленный металл азота. При сварочных темпе­ратурах азот, переходя в атомарное состояние, хорошо растворяется в жидком металле сварочной ванны. Азот при охлаждении выделяется из раствора и при взаимодействии с ме­таллами образует нитриды: Fe2N, МnN, SiN и др., которые значительно снижают пластичность металла. Во­дород попадает в наплавленный ме­талл из влаги, содержащейся в элек­тродном покрытии, или из ржавчины на свариваемой поверхности, а также из флюса.

При кристаллизации металла шва водород, не успевая выделиться из металла, образует поры и мелкие трещины, а также " флокены" — де­фект в виде светлого пятна, видимый на поверхности излома.

Очень вредными примесями в на­плавленном металле являются сера и фосфор. Сера образует сернистое же­лезо FeS с низкой температурой плавления, равной 1193° С. При кри­сталлизации стали сернистое желе­зо, оставаясь в расплавленном состо­янии, распределяется между кри­сталлами, вызывая появление тре­щин. Фосфор, присутствуя в наплав­ленном металле в виде фосфидов же­леза Fe3S и Fe2S, резко снижает пла­стичность металла:

Кристаллизация металла шва. При охлаждении и затвердевании жидкого металла шва происходит его кристаллизация, т. е. образование кристаллитов из жидкой фазы. Кри­сталлиты представляют собой кри­сталлы неправильной формы. Про­цесс образования кристаллитов из жидкого расплавленного металла при переходе его в твердое состояние называется первичной кристаллиза­цией. Первичная кристаллизация на­чинается по условной границе сплавления (рис. 8.3), по линии 1 начала охлаждения сварочной ванны, при этом происходит зарождение центров кристаллизации и рост зерен 2. Вы­росшие зерна имеют различную фор­му и расположение. В том случае, ес­ли зерна не имеют определенной ори­ентации и напоминают форму много­гранника, структура гранулярная (зернистая). Она может быть крупно и мелкозернистой. Процесс измене­ния формы кристаллитов в металле, находящемся в твердом состоянии, носит название вторичной кристал­лизации. Если же зерна вытянуты в одном направлении, структура назы­вается столбчатой и дендритной. Крупнозернистое строение металла со столбчато-дендритной структурой характерно для медленного охлажде­ния.

Рис.8.3. Первичная кристаллизация металла шва. Стрелки показывают направление отвода тепла

Конечная структура металла шва зависит в основном от способа свар­ки, условий ее проведения, а также химического состава основного и при­садочного металлов. Так, при ручной сварке электродом из низкоуглеро­дистой стали (содержание углерода до 0, 2 %) металл шва имеет структу­ру с менее выраженной ориентиров­кой кристаллов и округлыми зернами феррита и перлита. При автоматической сварке этой же стали под флюсом, когда скорость охлаждения более медленная, чем при ручной сварке металлическим электродом, металл шва приобрета­ет столбчатодендритную структуру.

В околошовной зоне сварного соединения малоуглеродистой незака­ливающейся стали, выполненного способом плавления, имеются следу­ющие структурные участки (рис. 8.4); участок перегрева, температурны­ми границами которого являются со стороны шва температура, близкая к солидусу, а со стороны основного ме­талла температура 1100° С;

участок 'нормализации; имеющий мелкозернистую структуру и повы­шенные свойства по сравнению с ис­ходной структурой;

участок неполной перекристалли­зации, находящейся в интервале тем­ператур от 725 до 850 ° С, при которых происходит частичная перекристал­лизация металла. Средние размеры зоны участков для некоторых видов сварки приведены в табл. 8.1.

 

Рис. 8.4. Структурные участки околошовной зо­ны в зависимости от удаленности от сварочного шва:

/ — зона малоуглеродистой незакаливающейся стали; // — зона за наливающейся легированной стали

В закаливающейся легированной стали участки располагаются в та кой последовательности по мере удале­ния от шва: закалки, частичной за­калки и отпуска.

Таблица.8.1. Размеры структурных участков околошовной зоны


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал