Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Силикаты с подразделением на подклассы.⇐ ПредыдущаяСтр 13 из 13
Силикаты и алюмосиликаты представляют собой обширную группу минералов. Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются Si, O, Al, Fe2+, Fe3+, Mg, Mn, Ca, Na, K, а также Li, B, Be, Zr, Ti, F, H, в виде (OH)− или H2O и др. Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. из них сложена основная масса горных пород: полевые шпаты, кварц, слюды, роговые обманки, пироксены, оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц, на долю которого приходится около 12 % от всех минералов. В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы [SiO4]3, которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов. 1. Островные силикаты, то есть силикаты с изолированными тетраэдрами [SiO4]4− и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал [SiO4]4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О2− , ОН− , F− и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров [Si2O7]6− . Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами. г) Кольцевые силикаты. Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их [Si3O9]6− , [Si4O12]8− , [Si6O18]2− , [Si12O30]18− . Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот, цоизит, ортит, родонит, берилл, кордиерит, турмалин и др. 2. Цепочечные силикаты, силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы [Si2O6]4− и [Si3O9]6− . Представители: пироксены ромбические (энстатит, гиперстен) и моноклинные (диопсид, салит, геденбергит, авгит, эгирин, сподумен, волластонит, силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются вмагматических и метаморфических горных породах. 3. Поясные (Ленточные) силикаты, это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры [Si4O11]6− . Представители: тремолит, актинолит, жадеит, роговая обманка. 4. Листовые силикаты, это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры [Si2O5]2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители: тальк, серпентин, хризотил-асбест, ревдинскит, палыгорскит, слюды (мусковит, флогопит, биотит), гидрослюды (вермикулит, глауконит), хлориты (пеннит, клинохлор и др), минералы глин(каолинит, хризоколла, гарниерит и др.), мурманит. 5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал [SiO2]0. Именно такой каркас отвечает структуре кварца. На этом основании его относят не к окислам, а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности, что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1: 3 или 1: 1. Силикаты, структура которых представлена обособленными кремнекислородными тетраэдрами, имеют изометрический облик (гранаты), гексагональный берилл имеет обособленные шестерные кольца кремнекислородных тетраэдров, силикаты цепочечной и поясной структур обычно вытянуты (амфиболы, пироксены). Особенно наглядны в этом отношении листовые силикаты (слюды, тальк, хлориты). Слои кремнекислородных тетраэдров являются очень прочными, а их связи друг с другом через катионы менее прочная. Расщепить их легко вдоль слоёв. Этим вызывается их спайность и листоватый облик. Силикаты — важные неметаллические полезные ископаемые: асбест, тальк, слюды, каолин, керамическое и огнеупорное сырьё, строительные материалы. Они также являются рудами на бериллий, литий, цезий, цирконий, никель, цинк и редкие земли. Кроме того они широко известны как драгоценные и поделочные камни: изумруд, аквамарин, топаз, нефрит, родонит и др. Эндогенное, главным образом магматическое (пироксены, полевые шпаты), они также характерны для пегматитов (слюды, турмалин, берилл и др.) и скарнов (гранаты, волластонит). Широко распространены в метаморфических породах — сланцах и гнейсах (гранаты, дистен, хлорит). Силикаты экзогенного происхождения представляют собой продукты выветривания или изменения первичных (эндогенных) минералов (каолинит, глауконит, хризоколла)
|