Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Аналитические методы






Это основные методы изучения связи. Они делятся на непараметрические и параметрические.

Непараметрические

Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.

Коэффициент Фехнера (коэффициент совпадения знаков)

x y
x1 x2 x3 . . . xn y1 y2 y3 . . . yn
х = хi - х y = yi - y
– + + – + + – + + – – + – +

Расчет основан на применении первых степеней отклонений значений признака от среднего уровня ряда двух связанных признаков.

i = кол-во совпадений – кол-во несовпадений
общее количество отклонений

 

i = 3 – 4 = – 1
7 7

 

 

Коэффициент совпадения знаков может принимать значения от –1 до +1. Чем ближе значение коэффициента к 1, тем связь более тесная. Знак коэффициента говорит о направлении, величина – о силе связи.

Коэффициенты ассоциации и контингенции

Используются для измерения связи между двумя качественными признаками, состоящими только из двух групп.

  ..... ..... Итого
..... a b a + b
..... d c c + d
Итого a + c b + d a + b+ c+ d
Оценка Посещение Неудовлетв. Положит. Итого
Посещали      
Не посещали      
Итого      

 

– коэфф. ассоциации;

– коэфф. контингенции.

Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или .

Коэффициент Спирмана (ранговый коэффициент)

Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение — ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним.

Построим разности между рангами и возведем их в квадрат.

Сам коэффициент рассчитывается по следующей формуле: .

Коэффициент Спирмана может принимать значения от –1 до +1, причем чем ближе значение коэффициента к 1, тем связь более тесная. Знак коэффициента говорит о направлении связи.

Для определения тесноты корреляционной связи применяется коэффициент корреляции.

Коэффициент корреляции изменяется от -1 до +1 и показывает тесноту и направление корреляционной связи.

Если отклонения по и по от среднего совпадают и по знаку, и по величине, то это полная прямая связь, то =+1.

Если полная обратная связь, то =-1.

Если связь отсутствует, то =0.

Наиболее удобной формулой для расчета коэффициента корреляции является:

 

(1)

Коэффициент корреляции можно рассчитать и по другой формуле:

(2), где

и

Параметрические

Главным параметрическим методом является корреляционный. Он заключается в нахождении уравнения связи, в котором результативный признак зависит только от интересующего нас фактора (или нескольких факторов). Все прочие факторы, также влияющие на результат, принимаются за постоянные средние.

Удобной формой изучения связи является корреляционная таблица. В этой таблице одни признаки располагаются по строкам, а другие – в колонках. Числа, стоящие на пересечении строк и колонок, показывают, сколько раз встречается данное значение факторного признака с данным значением результативного.

Рассмотрим следующую схему:

К-во станков Час. прод. 3-5 5-7 7-9 9-11 fy
10-15          
15-20          
20-25          
25-30          
30-35          
fx          

 

По такой таблице можно сделать выводы (1) о том, существует ли связь, (2) о ее направлении и (3) о ее интенсивности (при условии существования связи).

 

В указанных уравнениях величина результативного признака представляет собой функцию только одного фактора х. Все прочие факторы приняты за постоянную и выражены параметром а0.

Таким образом, при выравнивании фактические значения у заменяются значениями, вычисленными по уравнению. Поскольку все факторы, определяющие у, являются постоянными средними величинами, постольку и выровненные значения (ух) являются средними величинами ().

 

Параметры а1 (а в уравнении параболы и а2) называются коэффициентами регрессии. В корреляционном анализе эти параметры показывают меру, в которой изменяется у при изменении х на одну единицу.

При линейной зависимости коэффициент регрессии а1 называется также коэффициентом пропорциональности. Он положителен при прямой зависимости, отрицателен – при обратной.

Параметр же а0 показывает влияние на результативный фактор множества неучтенных факторов.

Парная корреляция или парная регрессия могут рассмат­риваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных — с другой. Когда же требуется охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят о множественной корреляции или множественной регрессии.

В ряде случаев именно от решения вопроса о регрессии — оценки уравнений регрессии — зависят оценки тесноты связи, а они, в свою очередь, дополняют результаты регрессионного анализа. Прежде всего следует определить перечень независимых переменных X, включаемых в уравнение. Это должно делаться на основе теоретических положений. Список Сможет быть достаточно широк и ограничен только исходной информацией. На практике теоретические положения о сути взаимосвязи подкрепляются парными коэффициентами корреляции между зависимой и независимыми переменными. Отбор наиболее значимых из них можно провести с помощью ЭВМ, выбирая в соответствии с коэффициентами корреляции и другими критериями факторы, наиболее тесно связанные с У. Параллельно решается вопрос о форме уравнения. Современные средства вычислительной техники позволяют за относительно короткое время рассчитать достаточно много вариантов уравнений. В ЭВМ вводятся значения зависимой переменной К и матрица независимых переменных X, принимается форма уравнения, например линейная. Ставится задача включить в уравнение к наиболее значимых X. В результате получается уравнение регрессии с к наиболее значимыми факторами. Аналогично можно выбрать наилучшую форму связи. Этот традиционный прием, называемый пошаговой регрессией, если он не противоречит качественным посылкам, достигает приемлемых результатов. Первоначально обычно берется линейная модель множественной регрессии:

Yi=a0 + a1Xi1 + a2Xi2 +... + akXik + ε i

или — в форме уравнения регрессии:

Yтеор.=a0 + a1Xi1 + a2Xi2 +... + akXik

Где Yтеор. расчетное значение регрессии, которое представляет собой оценку ожидаемого значения Y при фиксированных значениях переменных Х1, Х2, …Хk;

а1, а2, а3, …, аk – коэффициенты регрессии, каждый из которых показывает, на сколько единиц изменится Y с изменением соответствующего признака X на единицу при условии, что остальные признаки останутся на прежнем уровне.

Параметры уравнения множественной регрессии, как правило, находятся методом наименьших квадратов. В матричной записи система уравнений имеет вид:

тх)*а=хту,

Где

Таким образом, .

Оценка параметров множественной регрессии вручную затруднительна, приводит к потерям точности и может лишь удовлетворить любопытство. Получение же оценок параметров на ЭВМ в настоящее время не представляет большой проблемы. Гораздо важнее, насколько линейная форма связи соответствует реально существующей зависимости между Y, с одной стороны, и множеством X — с другой.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал