Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Абсолютные показатели вариации






Для измерения размера вариации используются следующие абсолютные показатели: размах, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение.

Самым простым показателем такой колеблемости любого признака является размах вариации. В общем случае он представляет собой разность между наибольшим и наименьшим значением признака: R = xmax-xmin.

Величина его целиком зависит от случайности распределения крайних членов ряда, и значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда.

Такие показатели, которые представляют собой средние, полученные из отклонений индивидуальных значений признака от их средней величины, лишены этого недостатка.

Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:

 

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:

— среднее квадратическое отклонение невзвешенное;

— среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Показатели относительного рассеивания.

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.

3. Коэффициент вариации.

Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. При этом исходят из того, что если V больше 30 %, то это говорит о большой колеблемости признака в изучаемой совокупности.

Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

— дисперсия невзвешенная (простая);

— дисперсия взвешенная.

Свойства дисперсии.

Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в раз, а среднее квадратическое отклонение - в к раз.

Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной: . Если А равна нулю, то приходим к следующему равенству: , т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

Общая дисперсия отражает вариацию признака за счет всех усло­вий и причин, действующих в совокупности.

Групповая (частная) дисперсия равна среднему квадрату от­клонений отдельных значений признака внутри группы от средней арифметической этой группы (групповой средней). Она может быть исчислена как простая средняя или как взвешенная соответственно по формулам:

;

Эта дисперсия отражает вариацию признака только за счет усло­вий и причин, действующих внутри группы.

Средняя из групповых (частных) дисперсий - это средняя арифме­тическая, взвешенная из дисперсий групповых:

Межгрупповая дисперсия равна среднему квадрату отклонений групповых средних Xj от общей средней X;

Межгрупповая дисперсия характеризует вариацию результативно­го признака за счет группировочного признака.

Между указанными видами дисперсий существует определенное соотношение: общая дисперсия равна сумме средней из групповых дисперсий и межгрупповой дисперсии:

Это соотношение называют правилом сложения дисперсий. С его помощью, зная два вида дисперсий, можно определить третий.

На основании правила сложения дисперсий вычисляется эмпирическое корреляционное отношение (ЭКО), которое равно квадратному корню из отношения межгрупповой дисперсии к общей.

Такой порядок вычисления обусловлен разложением общей вариации на вариацию, зависящую от фактора, положенного в основу группировки, которая численно равна межгрупповой дисперсии, и общую вариацию.

Межгрупповая дисперсия составляет часть общей дисперсии и складывается под влиянием только одного группировочного фактора. Именно поэтому подкоренное выражение показывает долю вариации за счет группировочного признака.

ЭКО изменяется в переделах от нуля до единицы. Чем ближе его значение к единице, тем большая доля вариации падает на группировочный признак.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал