Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Двойственная задача






В матричном виде задача, двойственная к задаче линейного программирования в общем виде, имеет вид: АtY ³ C, Y ³ 0, V=(b, y) -> max.

Если взять двойственную задачу к двойственной, то получим исходную задачу. (Здесь Аt - транспонированная матрица).

ТЕОРЕМА. Задача линейного программирования корректна тогда и только тогда, когда исходная и двойственная задачи являются допустимыми. При этом минимум целевой функции в исходной задаче равен максимуму целевой функции в задаче двойственной.

Эта теорема позволяет вместо корректности задачи проверять два раза допустимость, что бывает заметно проще. Кроме того, важно, что ответы в двойственных задачах совпадают. Изредка, например когда имеем два неравенства со многими неизвестными, данная теорема позволяет перейти к случаю двух переменных и решать задачу графическим способом.

Напишем к задаче 2 двойственную:

, поэтому двойственная задача имеет вид:

и в ней ищется максимум функции V = 200y1 + 130y2 + 75y3

Упражнение: написать двойственную задачу к задаче 3.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал